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Preface to Volume 3

This volume appears for the first time in a separate form. Though part of it has been
updated from the second volume of the fourth edition, in the main it is an entirely new
work. Its objective is to separate the fluid mechanics formulations and applications
from those of solid mechanics and thus perhaps to reach a different interest group.

Though the introduction to the finite element method contained in the first volume
(the basis) is general, in it we have used, in the main, examples of elastic solids. Only a
few applications to areas such as heat conduction, porous media flow and potential
field problems have been presented. The reason for this is that all such problems
are self-adjoint and that for such self-adjoint problems Galerkin procedures are opti-
mal. For convection dominated problems the Galerkin process is no longer optimal and
it is here that most of the fluid mechanics problems lie.

The present volume is devoted entirely to fluid mechanics and uses in the main the
methods introduced in Volume 1. However, it then enlarges these to deal with the
non-self-adjoint problems of convection which are essential to fluid mechanics prob-
lems.

It is our intention that the present volume could be used by investigators familiar
with the finite element method in general terms and introduce them to the subject of
fluid mechanics. It can thus in many ways stand alone. However, many of the general
finite element procedures available in Volume 1 may not be familiar to a reader intro-
duced to the finite element method through different texts and therefore we recom-
mend that this volume be used in conjunction with Volume 1 to which we make
frequent reference.

In fluid mechanics several difficulties arise. (1) The first is that of dealing with
incompressible or almost incompressible situations. These, as we already know, present
special difficulties in formulation even in solids. (2) Second and even more important
is the difficulty introduced by the convection which requires rather specialized treat-
ment and stabilization. Here particularly in the field of compressible high-speed gas
flow many alternative finite element approaches are possible and often different algo-
rithms for different ranges of flow have been suggested. Although slow creeping flows
may well be dealt with by procedures almost identical to those of solid mechanics, the
high-speed range of supersonic and hypersonic flow may require a very particular
treatment. In this text we shall generally use only one algorithm the so-called charac-
teristic based split (CBS), introduced a few years ago by the authors. It turns out that
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this algorithm is applicable to all ranges of flow and indeed gives results which are at
least equal to those of specialized methods. We shall therefore stress its development
and give details of its use in the third chapter dealing with discretization.

We hope that the book will be useful in introducing the reader to the complex sub-
ject of fluid mechanics and its many facets. Further we hope it will also be of use to the
experienced practitioner of computational fluid dynamics (CFD) who may find the
new presentation of interest and practical application.
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Introduction and the equations
of fluid dynamics

1.1 General remarks and classification of fluid mechanics
problems discussed in this book

The problems of solid and fluid behaviour are in many respects similar. In both media
stresses occur and in both the material is displaced. There is however one major
difference. The fluids cannot support any deviatoric stresses when the fluid is at
rest. Then only a pressure or a mean compressive stress can be carried. As we
know, in solids, other stresses can exist and the solid material can generally support
structural forces.

In addition to pressure, deviatoric stresses can however develop when the fluid is in
motion and such motion of the fluid will always be of primary interest in fluid
dynamics. We shall therefore concentrate on problems in which displacement is
continuously changing and in which velocity is the main characteristic of the flow.
The deviatoric stresses which can now occur will be characterized by a quantity
which has great resemblance to shear modulus and which is known as dynamic
viscosity.

Up to this point the equations governing fluid flow and solid mechanics appear to
be similar with the velocity vector u replacing the displacement for which previously
we have used the same symbol. However, there is one further difference, i.e. that even
when the flow has a constant velocity (steady state), convective acceleration occurs.
This convective acceleration provides terms which make the fluid mechanics
equations non-self-adjoint. Now therefore in most cases unless the velocities are
very small, so that the convective acceleration is negligible, the treatment has to be
somewhat different from that of solid mechanics. The reader will remember that
for self-adjoint forms, the approximating equations derived by the Galerkin process
give the minimum error in the energy norm and thus are in a sense optimal. This is no
longer true in general in fluid mechanics, though for slow flows (creeping flows) the
situation is somewhat similar.

With a fluid which is in motion continual preservation of mass is always necessary
and unless the fluid is highly compressible we require that the divergence of the
velocity vector be zero. We have dealt with similar problems in the context of
elasticity in Volume 1 and have shown that such an incompressibility constraint
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introduces very serious difficulties in the formulation (Chapter 12, Volume 1). In fluid
mechanics the same difficulty again arises and all fluid mechanics approximations
have to be such that even if compressibility occurs the limit of incompressibility
can be modelled. This precludes the use of many elements which are otherwise
acceptable.

In this book we shall introduce the reader to a finite element treatment of the
equations of motion for various problems of fluid mechanics. Much of the activity
in fluid mechanics has however pursued a finite difference formulation and more
recently a derivative of this known as the finite volume technique. Competition
between the newcomer of finite elements and established techniques of finite differ-
ences have appeared on the surface and led to a much slower adoption of the finite
element process in fluid mechanics than in structures. The reasons for this are perhaps
simple. In solid mechanics or structural problems, the treatment of continua arises
only on special occasions. The engineer often dealing with structures composed of
bar-like elements does not need to solve continuum problems. Thus his interest has
focused on such continua only in more recent times. In fluid mechanics, practically
all situations of flow require a two or three dimensional treatment and here
approximation was frequently required. This accounts for the early use of finite
differences in the 1950s before the finite element process was made available. How-
ever, as we have pointed out in Volume 1, there are many advantages of using the
finite element process. This not only allows a fully unstructured and arbitrary
domain subdivision to be used but also provides an approximation which in self-
adjoint problems is always superior to or at least equal to that provided by finite
differences.

A methodology which appears to have gained an intermediate position is that of
finite volumes, which were initially derived as a subclass of finite difference methods.
We have shown in Volume 1 that these are simply another kind of finite element form
in which subdomain collocation is used. We do not see much advantage in using that
form of approximation. However, there is one point which seems to appeal to many
investigators. That is the fact that with the finite volume approximation the local
conservation conditions are satisfied within one element. This does not carry over
to the full finite element analysis where generally satisfaction of all conservation
conditions is achieved only in an assembly region of a few elements. This is no
disadvantage if the general approximation is superior.

In the reminder of this book we shall be discussing various classes of problems,
each of which has a certain behaviour in the numerical solution. Here we start with
incompressible flows or flows where the only change of volume is elastic and
associated with transient changes of pressure (Chapter 4). For such flows full incom-
pressible constraints have to be applied.

Further, with very slow speeds, convective acceleration effects are often negligible
and the solution can be reached using identical programs to those derived for
elasticity. This indeed was the first venture of finite element developers into the
field of fluid mechanics thus transferring the direct knowledge from structures to
fluids. In particular the so-called linear Stokes flow is the case where fully incompres-
sible but elastic behaviour occurs and a particular variant of Stokes flow is that used
in metal forming where the material can no longer be described by a constant viscosity
but possesses a viscosity which is non-newtonian and depends on the strain rates.
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Here the fluid (flow formulation) can be applied directly to problems such as the
forming of metals or plastics and we shall discuss that extreme of the situation at
the end of Chapter 4. However, even in incompressible flows when the speed increases
convective terms become important. Here often steady-state solutions do not exist or
at least are extremely unstable. This leads us to such problems as eddy shedding which
is also discussed in this chapter.

The subject of turbulence itself is enormous, and much research is devoted to it. We
shall touch on it very superficially in Chapter 5: suffice to say that in problems where
turbulence occurs, it is possible to use various models which result in a flow-
dependent viscosity. The same chapter also deals with incompressible flow in which
free-surface and other gravity controlled effects occur. In particular we show the
modifications necessary to the general formulation to achieve the solution of prob-
lems such as the surface perturbation occurring near ships, submarines, etc.

The next area of fluid mechanics to which much practical interest is devoted is of
course that of flow of gases for which the compressibility effects are much larger.
Here compressibility is problem-dependent and obeys the gas laws which relate the
pressure to temperature and density. It is now necessary to add the energy
conservation equation to the system governing the motion so that the temperature
can be evaluated. Such an energy equation can of course be written for incompressible
flows but this shows only a weak or no coupling with the dynamics of the flow.

This is not the case in compressible flows where coupling between all equations is
very strong. In compressible flows the flow speed may exceed the speed of sound and
this may lead to shock development. This subject is of major importance in the field of
aerodynamics and we shall devote a substantial part of Chapter 6 just to this
particular problem.

In a real fluid, viscosity is always present but at high speeds such viscous effects are
confined to a narrow zone in the vicinity of solid boundaries (boundary layer). In such
cases, the remainder of the fluid can be considered to be inviscid. There we can return
to the fiction of so-called ideal flow in which viscosity is not present and here various
simplifications are again possible.

One such simplification is the introduction of potential flow and we shall mention
this in Chapter 4. In Volume 1 we have already dealt with such potential flows under
some circumstances and showed that they present very little difficulty. But unfortu-
nately such solutions are not easily extendable to realistic problems.

A third major field of fluid mechanics of interest to us is that of shallow water flows
which occur in coastal waters or elsewhere in which the depth dimension of flow is
very much less than the horizontal ones. Chapter 7 will deal with such problems in
which essentially the distribution of pressure in the vertical direction is almost hydro-
static.

In shallow-water problems a free surface also occurs and this dominates the flow
characteristics.

Whenever a free surface occurs it is possible for transient phenomena to happen,
generating waves such as for instance those that occur in oceans and other bodies
of water. We have introduced in this book a chapter (Chapter 8) dealing with this
particular aspect of fluid mechanics. Such wave phenomena are also typical of
some other physical problems. We have already referred to the problem of
acoustic waves in the context of the first volume of this book and here we show
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that the treatment is extremely similar to that of surface water waves. Other waves
such as electromagnetic waves again come into this category and perhaps the
treatment suggested in Chapter 8 of this volume will be effective in helping those
areas in turn.

In what remains of this chapter we shall introduce the general equations of fluid
dynamics valid for most compressible or incompressible flows showing how the
particular simplification occurs in each category of problem mentioned above.
However, before proceeding with the recommended discretization procedures,
which we present in Chapter 3, we must introduce the treatment of problems in
which convection and diffusion occur simultaneously. This we shall do in Chapter
2 with the typical convection—diffusion equation. Chapter 3 will introduce a general
algorithm capable of solving most of the fluid mechanics problems encountered in this
book. As we have already mentioned, there are many possible algorithms; very often
specialized ones are used in different areas of applications. However the general
algorithm of Chapter 3 produces results which are at least as good as others achieved
by more specialized means. We feel that this will give a certain unification to the whole
text and thus without apology we shall omit reference to many other methods or dis-
cuss them only in passing.

1.2 The governing equations of fluid dynamics' 3

1.2.1 Stresses in fluids

The essential characteristic of a fluid is its inability to sustain shear stresses when at
rest. Here only hydrostatic ‘stress’ or pressure is possible. Any analysis must therefore
concentrate on the motion, and the essential independent variable is thus the velocity
u or, if we adopt the indicial notation (with the x, y, z axes referred to as x;,i = 1, 2, 3),

w, i=1,23 (1.1)

This replaces the displacement variable which was of primary importance in solid
mechanics.

The rates of strain are thus the primary cause of the general stresses, 0;;, and these
are defined in a manner analogous to that of infinitesimal strain as

- 81/!,/8)(7] + 3uj/8x,

&ij = 3
This is a well-known tensorial definition of strain rates but for use later in variational
forms is written as a vector which is more convenient in finite element analysis. Details
of such matrix forms are given fully in Volume 1 but for completeness we mention

them here. Thus, this strain rate is written as a vector (€). This vector is given by
the following form

(1.2)

& = [E11,60,2810] = [E11,€m, Y1) (1.3)
in two dimensions with a similar form in three dimensions:

&1 = (811,60, €33, 2612, 2603, 2631 (1.4)
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When such vector forms are used we can write the strain rates in the form
£€=Su (1.5)

where S is known as the stain operator and u is the velocity given in Eq. (1.1).

The stress—strain relations for a linear (newtonian) isotropic fluid require the
definition of two constants.

The first of these links the deviatoric stresses 7;; to the deviatoric strain rates:

_ Ok . Eik
Tz:/=‘7z/—5i/3=2u<5f/—5z:/3> (1.6)
In the above equation the quantity in brackets is known as the deviatoric strain, 6;; is
the Kronecker delta, and a repeated index means summation; thus

o =01 +0pn+ 03 and Ei =€ +Enteéxn (1.7)

The coefficient y is known as the dynamic (shear) viscosity or simply viscosity and is
analogous to the shear modulus G in linear elasticity.
The second relation is that between the mean stress changes and the volumetric
strain rates. This defines the pressure as
o'.. .

P:%:*’%iﬂrl’o (1.8)
where « is a volumetric viscosity coefficient analogous to the bulk modulus K in linear
elasticity and p is the initial hydrostatic pressure independent of the strain rate (note
that p and p, are invariably defined as positive when compressive).

We can immediately write the ‘constitutive’ relation for fluids from Eqs (1.6) and
(1.8) as

. Ok )
i = 24 (5::/ - > + bijkeérk — bipo
=Ty — by (1.9a)
or
oy =2pé; + 6(k — %#)éii +6ipo (1.9b)

Traditionally the Lamé notation is often used, putting
k—2p=X\ (1.10)

but this has little to recommend it and the relation (1.9a) is basic. There is little
evidence about the existence of volumetric viscosity and we shall take

HéiiEO (111)

in what follows, giving the essential constitutive relation as (now dropping the suffix
on po)

bij€rk

Oijj = 2/’(’ <éij - > - 6{,‘]9 =T — (5,j,~p (11221)

without necessarily implying incompressibility £; = 0.

5
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In the above,

. . GiEk ) Ou;  Ou; 2 Ouy,

All of the above relationships are analogous to those of elasticity, as we shall note
again later for incompressible flow. We have also mentioned this in Chapter 12 of
Volume 1 where various stabilization procedures are considered for incompressible
problems.

Non-linearity of some fluid flows is observed with a coefficient . depending on
strain rates. We shall term such flows ‘non-newtonian’.

1.2.2 Mass conservation

If p is the fluid density then the balance of mass flow pu; entering and leaving an
infinitesimal control volume (Fig. 1.1) is equal to the rate of change in density
ap 0

E+axi

or in traditional cartesian coordinates
dop O

0 0
o Fax ()t g (o0) £ 5 (ow) =0 (1.13b)

(pu;) E%+VT(pu) =0 (1.13a)

dxy; (dy) | dxs; (dz)
Xo; (¥)

dx; (dx)

X1; (X)

X3; (2)

Fig. 1.1 Coordinate direction and the infinitesimal control volume.

1.2.3 Momentum conservation - or dynamic equilibrium

Now the balance of momentum in the jth direction, this is (pu;)u; leaving and entering
a control volume, has to be in equilibrium with the stresses o;; and body forces pf;
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giving a typical component equation

Apw;) 0 9 o
ar T o, Pl = g (o) = pf =0 (1.14)
or using (1.12a),
opw;) 0 d(ry) | Ip _
o +a—xi[(pu,)u,-]_ Bx; +§Ci—pfj—0 (1.15a)

with (1.12b) implied.
Once again the above can, of course, be written as three sets of equations in
cartesian form:

0 0 B 0 0 0 Txx 87—xy aTx: 8[) _
a(ﬁ”) +a(ﬂ” ) +a*y(ﬂ’w) +&(PW) *W*TyfﬁJra* fe =0

(1.15b)

etc.

1.2.4 Energy conservation and equation of state

We note that in the equations of Secs 1.2.2 and 1.2.3 the independent variables are u;
(the velocity), p (the pressure) and p (the density). The deviatoric stresses, of course,
were defined by Eq. (1.12b) in terms of velocities and hence are not independent.

Obviously, there is one variable too many for this equation system to be capable of
solution. However, if the density is assumed constant (as in incompressible fluids) or if
a single relationship linking pressure and density can be established (as in isothermal
flow with small compressibility) the system becomes complete and is solvable.

More generally, the pressure (p), density (p) and absolute temperature (7') are
related by an equation of state of the form

p=ppT) (1.16)
For an ideal gas this takes, for instance, the form
P
=—— 1.17
P =27 (1.17)

where R is the universal gas constant.

In such a general case, it is necessary to supplement the governing equation system
by the equation of energy conservation. This equation is indeed of interest even if it is
not coupled, as it provides additional information about the behaviour of the system.

Before proceeding with the derivation of the energy conservation equation we must
define some further quantities. Thus we introduce e, the intrinsic energy per unit mass.
This is dependent on the state of the fluid, i.e. its pressure and temperature or

e=e(T,p) (1.18)
The total energy per unit mass, E, includes of course the kinetic energy per unit mass
and thus

Uil

E= 1.1
e+ 5 (1.19)
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Finally, we can define the enthalpy as

h=e+? or H=ny"Mi_p, P (1.20)
p 2 p
and these variables are found to be convenient.
Energy transfer can take place by convection and by conduction (radiation gener-

ally being confined to boundaries). The conductive heat flux g; is defined as
0
3)6,»

where k is an isotropic thermal conductivity.

To complete the relationship it is necessary to determine heat source terms. These
can be specified per unit volume as gy due to chemical reaction (if any) and must
include the energy dissipation due to internal stresses, i.e. using Eq. (1.12),

0 0 0
876,- (oyu;) = aix(Tij”j) - 8796, (puy) (1.22)

i

Ui

gi=—k—T (1.21)

The balance of energy in a unit volume can now thus be written as

A(pE) 0 o [, 0T o
o1 %““f“‘&("m)*

or more simply

O(pE) 0 o (TN @ ‘ -
TR A <k ax,-) + g () — it — gy =0 (1.23b)

Here, the penultimate term represents the work done by body forces.

d
o (P) = = () = pfius = qir = 0 (1.23a)

1.2.5 Navier-Stokes and Euler equations

The governing equations derived in the preceding sections can be written in the
general conservative form

0@
S FVF+VG+Q=0 (1.24a)
or
0% OF, 0G, _
ot tan Q0 (1.24b)

in which Eqs (1.13), (1.15) or (1.23) provide the particular entries to the vectors.
Thus, the vector of independent unknowns is, using both indicial and cartesian
notation,

p p
pUy pu

® =< pu, or, in cartesian notation, U=« pv (1.25a)
pu3 pw

pE pE
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pu; pu
puyu; + pby; pu’ +p
F; = ¢ pusu; + pby; or F, = puv , etc. (1.25b)
pus; + pos; puw
pHu; pHu
0
—Ti
G, = e or
T3
oT
—(mp) = ko
0
Txx
G, = Ty , etc. (1.25¢)
—Tzx
oT
_(Txxu + TxyV + szw) - ka
0 0
—ph —pfs
Q= —ph or Q= —pfy , et
—pfs —pf-
—pfit; — qu —p(feu+fov+fow) —qy

(1.254d)
with

Ty = H ox;  Ox; V3 Ox;

The complete set of (1.24) is known as the Navier—Stokes equation. A particular
case when viscosity is assumed to be zero and no heat conduction exists is known
as the ‘Euler equation’ (7;; = k = 0).

The above equations are the basis from which all fluid mechanics studies start and
it is not surprising that many alternative forms are given in the literature obtained
by combinations of the various equations.” The above set is, however, convenient
and physically meaningful, defining the conservation of important quantities. It
should be noted that only equations written in conservation form will yield the
correct, physically meaningful, results in problems where shock discontinuities are
present. In Appendix A, we show a particular set of non-conservative equations
which are frequently used. There we shall indicate by an example the possibility
of obtaining incorrect solutions when a shock exists. The reader is therefore

9
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cautioned not to extend the use of non-conservative equations to the problems of
high-speed flows.

In many actual situations one or another feature of the flow is predominant. For
instance, frequently the viscosity is only of importance close to the boundaries at
which velocities are specified, i.e.

r, where u; = u;
or on which tractions are prescribed:
P[ where n,-U,-j = [j

In the above n; are the direction cosines of the outward normal.

In such cases the problem can be considered separately in two parts: one as the
boundary layer near such boundaries and another as inviscid flow outside the bound-
ary layer.

Further, in many cases a steady-state solution is not available with the fluid
exhibiting turbulence, i.e. a random fluctuation of velocity. Here it is still possible
to use the general Navier—Stokes equations now written in terms of the mean flow
but with a Reynolds viscosity replacing the molecular one. The subject is dealt with
elsewhere in detail and in this volume we shall limit ourselves to very brief remarks.
The turbulent instability is inherent in the simple Navier—Stokes equations and it is in
principle always possible to obtain the transient, turbulent, solution modelling of the
flow, providing the mesh size is capable of reproducing the random eddies. Such com-
putations, though possible, are extremely costly and hence the Reynolds averaging is
of practical importance.

Two important points have to be made concerning inviscid flow (ideal fluid flow as it
is sometimes known).

Firstly, the Euler equations are of a purely convective form:

Q?+8E:0

ot 0x;
and hence very special methods for their solutions will be necessary. These methods
are applicable and useful mainly in compressible flow, as we shall discuss in Chapter 6.
Secondly, for incompressible (or nearly incompressible) flows it is of interest to intro-
duce a potential that converts the Euler equations to a simple self-adjoint form. We
shall mention this potential approximation in Chapter 4. Although potential forms
are applicable also to compressible flows we shall not discuss them later as they fail
in high-speed supersonic cases.

F, = F,(U) (1.26)

1.3 Incompressible (or nearly incompressible) flows

We observed earlier that the Navier—Stokes equations are completed by the existence
of a state relationship giving [Eq. (1.16)]

p=rp(p,T)
In (nearly) incompressible relations we shall frequently assume that:

1. The problem is isothermal.
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2. The variation of p with p is very small, i.e. such that in product terms of velocity
and density the latter can be assumed constant.

The first assumption will be relaxed, as we shall see later, allowing some thermal
coupling via the dependence of the fluid properties on temperature. In such cases
we shall introduce the coupling iteratively. Here the problem of density-induced
currents or temperature-dependent viscosity (Chapter 5) will be typical.

If the assumptions introduced above are used we can still allow for small compres-
sibility, noting that density changes are, as a consequence of elastic deformability,
related to pressure changes. Thus we can write

dp = % dp (1.272)
where K is the elastic bulk modulus. This can be written as
1
dp= = dp (1.27b)
or
dp 1 0p
w20 (1.27¢)

with ¢ = 4/ K /p being the acoustic wave velocity.
Equations (1.24) and (1.25) can now be rewritten omitting the energy transport
(and condensing the general form) as

Lop _ 1.28:
2o Pax 0 (1.282)
o 0 1op 10
e A SN S 1.28b
6z+6x,-(u’u’)+p8x,~ pox, £ (1:280)

With j = 1,2, 3 this represents a system of four equations in which the variables are
u; and p.
Written in terms of cartesian coordinates we have, in place of Eq. (1.28a),

1 dp Ou v ow 0

R R = 1.29
¢ ot p8x+p8y+paz (1.292)
where the first term is dropped for complete incompressibility (¢ = co) and
ou 0 ,, 0 0 1 dp
E%—a(u )+a—y(uv) +E(uw) +;$
1/ 0 0 0
— =T+ =T+ =7 | — [+ = 1.2
P < ox Ty ™t T) fi=0 (1.29b)
with similar forms for y and z. In both forms
1 Ou;  Ou, 2 Ouy,
KR toas )

where v = u/p is the kinematic viscosity.

1
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The reader will note that the above equations, with the exception of the convective

acceleration terms, are identical to those governing the problem of incompressible (or
slightly compressible) elasticity, which we have discussed in Chapter 12 of Volume 1.

1.4 Concluding remarks

We have observed in this chapter that a full set of Navier—Stokes equations can be
written incorporating both compressible and incompressible behaviour. At this
stage it is worth remarking that

1.

More specialized sets of equations such as those which govern shallow-water flow
or surface wave behaviour (Chapters 5, 7 and 8) will be of similar forms and need
not be repeated here.

. The essential difference from solid mechanics equations involves the non-self-

adjoint convective terms.

Before proceeding with discretization and indeed the finite element solution of the

full fluid equations, it is important to discuss in more detail the finite element
procedures which are necessary to deal with such convective transport terms.

We shall do this in the next chapter where a standard scalar convective—diffusive—

reactive equation is discussed.

N

® oW
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Convection dominated problems -
finite element approximations to
the convection—diffusion equation

2.1 Introduction

In this chapter we are concerned with the steady-state and transient solutions of
equations of the type
0® OF;, 0G;

E—‘r 8)(7,' + 3x,-

+Q=0 (2.1)

where in general @ is the basic dependent, vector-valued variable, Q is a source or
reaction term vector and the ffux matrices F and G are such that

F, =F;(®) (2.2a)
and in general
o-o(3)
0x; (2.2b)
Q = Q('xi7 (I))

In the above, x; and i refer in the indicial manner to cartesian coordinates and
quantities associated with these.

Equations (2.1) and (2.2) are conservation laws arising from a balance of the
quantity ® with its fluxes F and G entering a control volume. Such equations are
typical of fluid mechanics which we have discussed in Chapter 1. As such equations
may also arise in other physical situations this chapter is devoted to the general
discussion of their approximate solution.

The simplest form of Eqgs (2.1) and (2.2) is one in which @ is a scalar and the fluxes
are linear functions. Thus

=9 Q=0(x;)
” (2.3)
8x,-

Fi=F=U¢ G=-k
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We now have in cartesian coordinates a scalar equation of the form

99  OU;ip) 0 (, 9¢
ot 0x; _Bx,-<8x)+Q

_oU , 9(Us9) , 0(Uy¢) D ( 99 9 (,0¢
254— Ox * Oy _8x( 8x) 8y( 8y)+Q 0 24

which will serve as the basic model for most of the present chapter.

In the above equation U; in general is a known velocity field, ¢ is a quantity being
transported by this velocity in a convective manner or by diffusion action, where k is
the diffusion coefficient.

In the above the term Q represents any external sources of the quantity ¢ being
admitted to the system and also the reaction loss or gain which itself is dependent
on the concentration ¢.

The equation can be rewritten in a slightly modified form in which the convective
term has been differentiated as

99 99

¢
E+Uax,+¢ax, ax,< ai>+Q_o (2.5)

We will note that in the above form the problem is self-adjoint with the exception of
a convective term which is underlined. The third term disappears if the flow itself is
such that its divergence is zero, i.e. if

ouU;
axi

=0 (summation over i implied) (2.6)

In what follows we shall discuss the scalar equation in much more detail as many of
the finite element remedies are only applicable to such scalar problems and are not
transferable to the vector forms. As in the CBS scheme, which we shall introduce
in Chapter 3, the equations of fluid dynamics will be split so that only scalar transport
occurs, where this treatment is sufficient.

From Eqgs (2.5) and (2.6) we have

96 9 0 [, 00 -

We have encountered this equation in Volume 1 [Eq. (3.11), Sec. 3.1] in connection
with heat transport, and indeed the general equation (2.1) can be termed the transport
equation with F standing for the convective and G for diffusive flux quantities.

With the variable ® (Eq. 2.1) being approximated in the usual way:

PrP=NE=) N (2.8)

the problem could be presented following the usual (weighted residual) semi-discreti-
zation process as

M& + H + =0 (2.9)

but now even with standard Galerkin (Bubnov) weighting the matrix H will not be
symmetric. However, this is a relatively minor computational problem compared
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with inaccuracies and instabilities in the solution which follow the arbitrary use of this
weighting function.

This chapter will discuss the manner in which these difficulties can be overcome and
the approximation improved.

We shall in the main address the problem of solving Eq. (2.4), i.e. the scalar form,
and to simplify matters further we shall often start with the idealized one-dimensional
equation:

0¢p op 0 (,00
E+U8x ox (k

8x)+QO (2.10)

The term ¢ OU /Ox has been removed here for simplicity. The above reduces in steady
state to an ordinary differential equation:
d¢ d do
de dx(kdx>+Q—0 (2.11)
in which we shall often assume U, k and Q to be constant. The basic concepts will be
evident from the above which will later be extended to multidimensional problems,
still treating ¢ as a scalar variable.

Indeed the methodology of dealing with the first space derivatives occurring in
differential equations governing a problem, which as shown in Chapter 3 of
Volume 1 lead to non-self-adjointness, opens the way for many new physical
situations.

The present chapter will be divided into three parts. Part I deals with steady-state
situations starting from Eq. (2.11), Part II with transient solutions starting from Eq.
(2.10) and Part III dealing with vector-valued functions. Although the scalar problem
will mainly be dealt with here in detail, the discussion of the procedures can indicate
the choice of optimal ones which will have much bearing on the solution of the general
case of Eq. (2.1). We shall only discuss briefly the extension of some procedures to the
vector case in Part III as such extensions are generally heuristic.

Part I: Steady state

2.2 The steady-state problem in one dimension

2.2.1 Some preliminaries

We shall consider the discretization of Eq. (2.11) with
¢~ N =Noé (2.12)

where N, are shape functions and &) represents a set of still unknown parameters.
Here we shall take these to be the nodal values of ¢. This gives for a typical internal
node i the approximating equation

Kij(gj +/i=0 (2.13)

15
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Fig. 2.1 Alinear shape function for a one-dimensional problem.

where
L dnN; L . dN;
&c{'mU—lm+Jdmk—im
‘ 0 dx o dx = dx
. (2.14)
fi= [ o
0

and the domain of the problem is 0 < x < L.
For linear shape functions, Galerkin weighting (W; = N;) and elements of equal
size h, we have for constant values of U, k and Q (Fig. 2.1) a typical assembled

equation
N . . on’
(—P€—1)¢i—1+2¢i+(Pe—1)¢i+l+T:0 (2.15)
where
Uh
Pe=— 2.1
e ok (2.16)

is the element Peclet number. The above is, incidentally, identical to the usual central
finite difference approximation obtained by putting

do i1 —di ,
o T (2.17a)
and
(127¢~¢5f+1 —2¢i + i (2.17b)

dx2 ™ h?

The algebraic equations are obviously non-symmetric and in addition their
accuracy deteriorates as the parameter Pe increases. Indeed as Pe — oo, i.e. when
only convective terms are of importance, the solution is purely oscillatory and
bears no relation to the underlying problem, as shown in the simple example where
0 is zero of Fig. 2.2 with curves labelled o = 0. (Indeed the solution for this problem
is now only possible for an odd number of elements and not for even.)

Of course the above is partly a problem of boundary conditions. When diffusion is
omitted only a single boundary condition can be imposed and when the diffusion is
small we note that the downstream boundary condition (¢ = 1) is felt in only a
very small region of a boundary layer evident from the exact solution

1 _ eUx/k

¢= | — oUL/k (2.18)
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----/---- Standard Galerkin o.= 0
= = 0= = Petrov—Galerkin o = 1.0 (full upwind difference)

—O— Petrov-Galerkin o = 0,
Exact

Pe =Uh/2k =0 10

A=0=0
(All exact)

Pe=25

o=0
(Exact)

Pe =

Fig. 2.2 Approximations to Udg/dx — kd’¢/dx> = 0 for ¢ = 0, x =0 and ¢ = 1, x = L for various Peclet

numbers.
Motivated by the fact that the propagation of information is in the direction of
velocity U, the finite difference practitioners were the first to overcome the bad
approximation problem by using one-sided finite differences for approximating the
first derivative.”~> Thus in place of Eq. (2.17a) and with positive U, the approxima-

tion was put as
(2.19)

a6 _ &,
dx h
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changing the central finite difference form of the approximation to the governing
equation as given by Eq. (2.15) to
- L on’
(=2Pe —1)¢; 1 + (2 +2Pe); — di 11 ‘*‘TZO (2.20)
With this upwind difference approximation, realistic (though not always accurate)
solutions can be obtained through the whole range of Peclet numbers of the example
of Fig. 2.2 as shown there by curves labelled & = 1. However, now exact nodal solu-
tions are only obtained for pure convection (Pe = o), as shown in Fig. 2.2, in a similar
way as the Galerkin finite element form gives exact nodal answers for pure diffusion.
How can such upwind differencing be introduced into the finite element scheme and
generalized to more complex situations? This is the problem that we shall now
address, and indeed will show that again, as in self-adjoint equations, the finite
element solution can result in exact nodal values for the one-dimensional approxima-
tion for all Peclet numbers.

2.2.2 Petrov-Galerkin methods for upwinding in one dimension

The first possibility is that of the use of a Petrov—Galerkin type of weighting in which
W; #+ N;.°7% Such weightings were first suggested by Zienkiewicz ez al.® in 1975 and
used by Christie ef al.” In particular, again for elements with linear shape functions
N;, shown in Fig. 2.1, we shall take, as shown in Fig. 2.3, weighting functions
constructed so that

where W/ is such that
l/
J Widy=+2 (2.22)
Q, 2

Fig. 2.3 Petrov—Galerkin weight function W; = N, + aW;". Continuous and discontinuous definitions.
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the sign depending on whether U is a velocity directed towards or away from the
node.

Various forms of W} are possible, but the most convenient is the following simple
definition which is, of course, a discontinuous function (see the note at the end of this
section):

. hdN; .
aW; = a5 (sign U) (2.23)

With the above weighting functions the approximation equivalent to that of
Eq. (2.15) becomes
on’

[=Pe(a+1) = 1]gi_1 + 2+ 2a(Pe)]g; + [~ Pe(a = 1) = g + =5 =0 (2.24)

Immediately we see that with o =0 the standard Galerkin approximation is
recovered [Eq. (2.15)] and that with o« =1 the full upwinded discrete equation
(2.20) is available, each giving exact nodal values for purely diffusive or purely
convective cases respectively.

Now if the value of « is chosen as

|| = agpe = coth |Pe| — (2.25)

| Pe
then exact nodal values will be given for all values of Pe. The proof of this is given in
reference 7 for the present, one-dimensional, case where it is also shown that if

1
|Pe]

oscillatory solutions will never arise. The results of Fig. 2.2 show indeed that with
a = 0, i.e. the Galerkin procedure, oscillations will occur when

|Pe| > 1 (2.27)

Figure 2.4 shows the variation of o, and agy with Pe.”

Although the proof of optimality for the upwinding parameter was given for the case
of constant coeflicients and constant size elements, nodally exact values will also be
given if @ = oy, is chosen for each element individually. We show some typical solu-
tions in Fig. 2.5' for a variable source term Q = O(x), convection coefficients
U = U(x) and element sizes. Each of these is compared with a standard Galerkin
solution, showing that even when the latter does not result in oscillations the accuracy
is improved. Of course in the above examples the Petrov—Galerkin weighting must be
applied to all terms of the equation. When this is not done (as in simple finite difference
upwinding) totally wrong results will be obtained, as shown in the finite difference
results of Fig. 2.6, which was used in reference 11 to discredit upwinding methods.
The effect of « on the source term is not apparent in Eq. (2.24) where Q is constant
in the whole domain, but its influence is strong when Q = Q(x).

|a| > Qi = 1 (226)

Continuity requirements for weighting functions
The weighting function W, (or W;) introduced in Fig. 2.3 can of course be discontin-
uous as far as the contributions to the convective terms are concerned [see Eq. (2.14)],

* Subsequently Pe is interpreted as an absolute value.

19
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1.0
0.8
Ogpt = Coth Pe—1/Pe (optimal)
0.6 -
3

0.4
s ! oy = 1-1/Pe (critical)

0 : | | | | | |

2 3 4 5 6 7

Fig. 2.4 Critical (stable) and optimal values of the ‘upwind’ parameter « for different values of Pe = Uh/2k.

L dF L dn;
J W;— dx or J W, U—" dx

0 dx 0 dx
Clearly no difficulty arises at the discontinuity in the evaluation of the above integrals.
However, when evaluating the diffusion term, we generally introduce integration by

parts and evaluate such terms as

o dx kTX dx

L d [ dN;
Jo Widx<kdx> dx

Here a local infinity will occur with discontinuous W;. To avoid this difficulty we modify
the discontinuity of the W; part of the weighting function to occur within the element!
and thus avoid the discontinuity at the node in the manner shown in Fig. 2.3. Now direct
integration can be used, showing in the present case zero contributions to the diffusion
term, as indeed happens with C, continuous functions for W;" used in earlier references.

JL dw; dN;

in place of the form

2.2.3 Balancing diffusion in one dimension

The comparison of the nodal equations (2.15) and (2.16) obtained on a uniform mesh
and for a constant Q shows that the effect of the Petrov—Galerkin procedure is
equivalent to the use of a standard Galerkin process with the addition of a diffusion

ky =LaUn (2.28)

to the original differential equation (2.11).
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@ ¢x10t 2
_ 90 4200 % = 2 [ ]
= dx? dx i
0<x<1 "

0=0,x=0,x=1 "

o 4

Exact
—O— Optimal Petrov—Galerkin
---@--- Standard Galerkin

1.00

0.95 -

0.90

-..--'._.._._.._-.--...-

6=0.x=2

0.85 -

1.00 ! !
2.0

>
>
X

Fig. 2.5 Application of standard Galerkin and Petrov—Galerkin (optimal) approximation: (a) variable source
term equation with constants k and h; (b) variable source term with a variable U.

The reader can easily verify that with this substituted into the original equation,
thus writing now in place of Eq. (2.11)

d¢ d dg B
de—(bc[(mkb)dx} +0=0 (2.29)

we obtain an identical expression to that of Eq. (2.24) providing Q is constant and a
standard Galerkin procedure is used.
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Exact and Petrov—Galerkin
2 - _ .
(o0 = 1) solution
U 1+ Finite difference
upwind solution
AAAAAANA AN A
0 | | |
0 5 10 15
X
Q

Fig. 2.6 A one-dimensional pure convective problem (k = 0) with a variable source term Q and constant
U. Petrov—Galerkin procedure results in an exact solution but simple finite difference upwinding gives
substantial error.

Such balancing diffusion is easier to implement than Petrov—Galerkin weighting,
particularly in two or three dimensions, and has some physical merit in the
interpretation of the Petrov—Galerkin methods. However, it does not provide the
modification of source terms required, and for instance in the example of Fig. 2.6
will give erroneous results identical with a simple finite difference, upwind, approx-
imation.

The concept of artificial diffusion introduced frequently in finite difference models
suffers of course from the same drawbacks and in addition cannot be logically
justified.

It is of interest to observe that a central difference approximation, when applied to
the original equations (or the use of the standard Galerkin process), fails by intro-
ducing a negative diffusion into the equations. This ‘negative’ diffusion is countered
by the present, balancing, one.

2.2.4 A variational principle in one dimension

Equation (2.11), which we are here considering, is not self-adjoint and hence is not
directly derivable from any variational principle. However, it was shown by
Guymon e al.'? that it is a simple matter to derive a variational principle (or
ensure self-adjointness which is equivalent) if the operator is premultiplied by a
suitable function p. Thus we write a weak form of Eq. (2.11) as

L d¢ d [ do B
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where p = p(x) is as yet undetermined. This gives, on integration by parts,

d¢ dp dw d(b d(b
L[ dX<pU+kdx> o FP gt WPQ]der‘kade

L
=0  (231)

Immediately we see that the operator can be made self-adjoint and a symmetric
approximation achieved if the first term in square brackets is made zero (see also
Chapter 3 of Volume 1, Sec. 3.11.2, for this derivation). This requires that p be
chosen so that

dp _
U+k— 2.32
pU+ kT = (2.32a)
or that
p = constant x ¢~ U/% = constant x e~ 2F)¥/h (2.32b)

For such a form corresponding to the existence of a variational principle the ‘best’
approximation is that of the Galerkin method with

W=N  ¢=) Nd (2.33)

Indeed, as shown in Volume 1, such a formulation will, in one dimension, yield
answers exact at nodes (see Appendix H of Volume 1). It must therefore be equivalent
to that obtained earlier by weighting in the Petrov—Galerkin manner. Inserting the
approximation of Eq. (2.33) into Eq. (2.31), with Eqs (2.32) defining p using an
origin at x = x;, we have for the ith equation of the uniform mesh

g dNI —2(Pe)x/h I —2(Pe)x/h
B (ke ) ¢J + N;e O|dx= (2.34)

with j =i — 1, i, i + 1. This gives, after some algebra, a typical nodal equation:

(1 —e 2P |+ (e72F) — 2P g — (1 — e 2PDyg, |

n ,

- 2(%;)]{ (" —e P =0 (2.35)
which can be shown to be identical with the expression (2.24) into which o = aip given
by Eq. (2.25) has been inserted.

Here we have a somewhat more convincing proof of the optimality of the proposed
Petrov—Galerkin weighting.'»'* However, serious drawbacks exist. The numerical
evaluation of the integrals is difficult and the equation system, though symmetric
overall, is not well conditioned if p is taken as a continuous function of x through
the whole domain. The second point is easily overcome by taking p to be discontinu-
ously defined, for instance taking the origin of x at point i for all assemblies as we did
in deriving Eq. (2.35). This is permissible by arguments given in Sec. 2.2 and is
equivalent to scaling the full equation system row by row."? Now of course the
total equation system ceases to be symmetric.

The numerical integration difficulties disappear, of course, if the simple weighting
functions previously derived are used. However, the proof of equivalence is important
as the problem of determining the optimal weighting is no longer necessary.
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24 Convection dominated problems

2.2.5 Galerkin least square approximation (GLS) in one
dimension

In the preceding sections we have shown that several, apparently different,
approaches have resulted in identical (or almost identical) approximations. Here
yet another procedure is presented which again will produce similar results. In this

a combination of the standard Galerkin and least square approximations is made.'>!¢
If Eq. (2.11) is rewritten as
Lé+0=0 d=~d=No (2.36a)
with
d d d
L=U—- — 2.
de dx (k dx) (2.36b)
the standard Galerkin approximation gives for the kth equation
L _ L
J N L(N)ddx + J N, Qdx =0 (2.37)
0 0

with boundary conditions omitted for clarity.
Similarly, a least square residual minimization (see Chapter 3 of Volume 1, Sec.
3.14.2) results in

s 1d (fo, o (hd(Ld) - .
R=Ly+Q and 2d<£kJoR dx—Jo~k (Lo +0)dx=0  (2.38)

or

J: (UCL]Z{_ic(kiC)Nk)(LéﬂLQ) =0 (239)

If the final approximation is written as a linear combination of Eqs (2.37) and
(2.39), we have

L dN, . d [/, d A B
JO <Nk AU - A <kdx>Nk) (Lé+ Q)dx =0 (2.40)

This is of course, the same as the Petrov—Galerkin approximation with an undeter-
mined parameter A. If the second-order term is omitted (as could be done assuming
linear N, and a curtailment as in Fig. 2.3) and further if we take

_ lafh

2\ =
2|U]

(2.41)

the approximation is identical to that of the Petrov—Galerkin method with the
weighting given by Eqs (2.21) and (2.22).
Once again we see that a Petrov—Galerkin form written as

L || Uh dN; dp d [, d¢ B
[ <Nk+2|wdx)<ydx_dx<kdx) +Q) Q=0 (242)
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is a result that follows from diverse approaches, though only the variational form of
Sec. 2.2.4 explicitly determines the value of « that should optimally be used. In all the
other derivations this value is determined by an a posteriori analysis.

2.2.6 The finite increment calculus (FIC) for stabilizing the
convective-diffusion equation in one dimension

As mentioned in the previous sections, there are many procedures which give identical
results to those of the Petrov—Galerkin approximations. We shall also find a number
of such procedures arising directly from the transient formulations discussed in Part
IT of this chapter; however there is one further simple process which can be applied
directly to the steady-state equation. This process was suggested by Ofate in
1998'7 and we shall describe its basis below.

We shall start at the stage where the conservation equation of the type given by
Eq. (2.5) is derived. Now instead of considering an infinitesimal control volume of
length ‘dx” which is going to zero, we shall consider a finite length 6. Expanding to
one higher order by Taylor series (backwards), we obtain instead of Eq. (2.11)

dgp d do o d¢ d do _

with ¢ being the finite distance which is smaller than or equal to that of the element
size h. Rearranging terms and substituting 6 = ah we have

Ud(;S d {<k+ahU>d¢}+ chQ_0

dx dx dx S 2dx

2

(2.44)

In the above equation we have omitted the higher order expansion for the diffusion
term as in the previous section.

From the last equation we see immediately that a stabilizing term has been
recovered and the additional term ohU/2 is identical to that of the Petrov—Galerkin
form (Eq. 2.28).

There is no need to proceed further and we see how simply the finite increment
procedure has again yielded exactly the same result by simply modifying the conser-
vation differential equations. In reference 17 it is shown further that arguments can be
brought to determine « as being precisely the optimal value we have already obtained
by studying the Petrov—Galerkin method.

2.2.7 Higher-order approximations

The derivation of accurate Petrov—Galerkin procedures for the convective diffusion
equation is of course possible for any order of finite element expansion. In reference
9 Heinrich and Zienkiewicz show how the procedure of studying exact discrete
solutions can yield optimal upwind parameters for quadratic shape functions.
However, here the simplest approach involves the procedures of Sec. 2.2.4, which
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Fig. 2.7 Assembly of one-dimensional quadratic elements.

are available of course for any element expansion and, as shown before, will always
give an optimal approximation.

We thus recommend the reader to pursue the example discussed in that section
and, by extending Eq. (2.34), to arrive at an appropriate equation linking the two
quadratic elements of Fig. 2.7.

For practical purposes for such elements it is possible to extend the Petrov—Galer-
kin weighting of the type given in Eqgs (2.21) to (2.23) now using

Qopt = coth Pe — Pie and aW; = ag (11];71 (sign U) (2.45)
This procedure, though not as exact as that for linear elements, is very effective and
has been used with success for solution of Navier—Stokes equations.'®
In recent years, the subject of optimal upwinding for higher-order approximations
has been studied further and several references show the developments.'>" It is of
interest to remark that the procedure known as the discontinuous Galerkin method
avoids most of the difficulties of dealing with higher-order approximations. This
procedure was recently applied to convection—diffusion problems and indeed to
other problems of fluid mechanics by Oden and coworkers.”! 2* As the methodology
is not available for lowest polynomial order of unity we do not include the details of
the method here but for completeness we show its derivation in Appendix B.

2.3 The steady-state problem in two (or three)
dimensions

2.3.1 General remarks

It is clear that the application of standard Galerkin discretization to the steady-state
scalar convection—diffusion equation in several space dimensions is similar to the
problem discussed previously in one dimension and will again yield unsatisfactory
answers with high oscillation for local Peclet numbers greater than unity.

The equation now considered is the steady-state version of Eq. (2.7), i.e.

9 96 0 [, 06\ O [, b B
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in two dimensions or more generally using indicial notation
Jdp 0 0¢
U; — k— =0 2.46b
lax,- 8)6,( 8.X,'> +Q ( )
in both two and three dimensions.
Obviously the problem is now of greater practical interest than the one-dimensional
case so far discussed, and a satisfactory solution is important. Again, all of the
possible approaches we have discussed are applicable.

2.3.2 Streamline (Upwind) Petrov-Galerkin weighting (SUPG)

The most obvious procedure is to use again some form of Petrov—Galerkin method of
the type introduced in Sec. 2.2.2 and Eqgs (2.21) to (2.25), seeking optimality of « in
some heuristic manner. Restricting attention here to two-dimensions, we note
immediately that the Peclet parameter

Uh U,
Pe=—- U{Uz} (2.47)

is now a ‘vector’ quantity and hence that upwinding needs to be ‘directional’.

The first reasonably satisfactory attempt to do this consisted of determining the
optimal Petrov—Galerkin formulation using aW* based on components of U
associated to the sides of elements and of obtaining the final weight functions by a
blending procedure.®’

A better method was soon realized when the analogy between balancing diffusion and
upwinding was established, as shown in Sec. 2.2.3. In two (or three) dimensions the con-
vection is only active in the direction of the resultant element velocity U, and hence the
corrective, or balancing, diffusion introduced by upwinding should be anisotropic with a
coefficient different from zero only in the direction of the velocity resultant. This
innovation introduced simultaneously by Hughes and Brooks®*? and Kelly et al'®
can be readily accomplished by taking the individual weighting functions as

ah U, (ON;/0x,) + Uy(ON;/0x,)

W, =N, Wi =N,
k kT alWy k+2 0]

ah U; BNk
=N +— — 2.48
“ T3 U] oy, (2.48)
where « is determined for each element by the previously found expression (2.22)
written as follows:

1
a = oy = coth Pe — Pe (2.49)
with
_|UlA
Pe = % (2.50a)
and

U= Ui+ U3 or U,U; (2.50b)
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28 Convection dominated problems

Fig. 2.8 A two-dimensional, streamline assembly. Element size h and streamline directions.

The above expressions presuppose that the velocity components U; and U, in a
particular element are substantially constant and that the element size /& can be
reasonably defined.

Figure 2.8 shows an assembly of linear triangles and bilinear quadrilaterals for each
of which the mean resultant velocity U is indicated. Determination of the element size
h to use in expression (2.50) is of course somewhat arbitrary. In Fig. 2.8 we show it
simply as the maximum size in the direction of the velocity vector.

The form of Eq. (2.48) is such that the ‘non-standard’ weighting W™ has a zero
effect in the direction in which the velocity component is zero. Thus the balancing
diffusion is only introduced in the direction of the resultant velocity (convective)
vector U. This can be verified if Eq. (2.46) is written in tensorial (indicial) notation as

op 0 O¢
U; ox, o, (k ) +0=0 (2.51a)

6)(,-

In the discretized form the ‘balancing diffusion’ term [obtained from weighting the
first term of the above with W of Eq. (2.48)] becomes

ON ~ ON
— k;; — dQ 2.51b
JQ 8)6,— v aXJ ( )
with
~ OZU,’[]] h

This indicates a highly anisotropic diffusion with zero coefficients normal to the
convective velocity vector directions. It is therefore named the streamline balancing
diﬁ"usion10’24’25 or streamline upwind Petrov—Galerkin process.

The streamline diffusion should allow discontinuities in the direction normal to
the streamline to travel without appreciable distortion. However, with the standard
finite element approximations actual discontinuities cannot be modelled and in
practice some oscillations may develop when the function exhibits ‘shock like’
behaviour. For this reason it is necessary to add some smoothing diffusion in the
direction normal to the streamlines and some investigators make appropriate
suggestions.* %



The steady-state problem in two (or three) dimensions

T(y) T=0

U

A
T=0

Ay

»

x T1=0

(a) Boundary conditions for test
problem

(b) Solutions for 6 = 45° (top) and
6 = 60° (bottom)

Fig. 2.9 ‘Streamline’ procedures in a two-dimensional problem of pure convection. Bilinear elements.*’

The mathematical validity of the procedures introduced in this section has been
established by Johnson et al.*® for @ = 1, showing convergence improvement over
the standard Galerkin process. However, the proof does not include any optimality
in the selection of « values as shown by Eq. (2.49).

Figure 2.9 shows a typical solution of Eq. (2.46), indicating the very small amount
of ‘cross-wind diffusion’, i.e. allowing discontinuities to propagate in the direction of
flow without substantial smearing.>!

A more convincing ‘optimality’ can be achieved by applying the exponential
modifying function, making the problem self-adjoint. This of course follows precisely
the procedures of Sec. 2.2.4 and is easily accomplished if the velocities are constant in
the element assembly domain. If velocities vary from element to element, again the
exponential functions

p=e (2.52)

with x’ orientated in the velocity direction in each element can be taken. This appears
to have been first implemented by Sampaio®' but problems regarding the origin of
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coordinates, etc., have once again to be addressed. However, the results are essentially
similar here to those achieved by Petrov—Galerkin procedures.

2.3.3 Galerkin least squares (GLS) and finite increment calculus
(FIC) in multidimensional problems

It is of interest to observe that the somewhat intuitive approach to the generation of
the ‘streamline’ Petrov—Galerkin weight functions of Eq. (2.48) can be avoided if the
least square Galerkin procedures of Sec. 2.2.4 are extended to deal with the multi-
dimensional equation. Simple extension of the reasoning given in Eqs (2.36) to
(2.42) will immediately yield the weighting of Eq. (2.48).

Extension of the GLS to two or three dimensions gives (again using indicial

notation)
ON, o6 0 [ 0 B
JQ (Nk + A\U; ax, > (Ujax, — —axj (k(’)x‘> + Q> dQ=0 (2.53)

7

In the above equation, higher-order terms are omitted for the sake of simplicity. As in
one dimension (Eq. 2.40) we have an additional weighting term. Now assuming

ah

=200 (2.54)

we obtain an identical stabilizing term to that of the streamline Petrov—Galerkin
procedure (Eq. 2.51).
The finite increment calculus method in multidimensions can be written as

9 0 (06N, &0 [ 0 o (06 ] _
Uif)xj axj<kaxj>+Q 2 Ox; {Ujaxj axj(kax.)—i_Q}_O (2.55)

]

17

Note that the value of §; is now dependent on the coordinate directions. To obtain
streamline-oriented stabilization, we simply assume that ¢; is the projection oriented
along the streamlines. Now

Ui

5i = (S
U]

(2.56)

with 6 = ah. Again, omitting the higher order terms in k, the streamline Petrov—
Galerkin form of stabilization is obtained (Eq. 2.51). The reader can verify that
both the GLS and FIC produce the correct weighting for the source term Q as of
course is required by the Petrov—Galerkin method.

2.4 Steady state — concluding remarks

In Secs 2.2 and 2.3 we presented several currently used procedures for dealing with the
steady-state convection—diffusion equation with a scalar variable. All of these
translate essentially to the use of streamline Petrov—Galerkin discretization, though
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of course the modification of the basic equations to a self-adjoint form given in
Sec. 2.2.4 produces the full justification of the special weighting. Which of the
procedures is best used in practice is largely a matter of taste, as all can give excellent
results. However, we shall see from the second part of this chapter, in which transient
problems are dealt with, that other methods can be adopted if time-stepping
procedures are used as an iteration to derive steady-state algorithms.

Indeed most of these procedures will again result in the addition of a diffusion term
in which the parameter « is now replaced by another one involving the length of the
time step Az. We shall show at the end of the next section a comparison between
various procedures for stabilization and will note essentially the same forms in the
steady-state situation.

In the last part of this chapter (Part IIT) we shall address the case in which the
unknown ¢ is a vector variable. Here only a limited number of procedures described
in the first two parts will be available and even so we do not recommend in general the
use of such methods for vector-valued functions.

Before proceeding further it is of interest to consider the original equation with a
source term proportional to the variable ¢, i.e. writing the one-dimensional equation
(2.11) as

d d d
Udidx<kdi>+m¢+Q0 (2.57)

Equations of this type will arise of course from the transient Eq. (2.10) if we assume

the solution to be decomposed into Fourier components, writing for each component

Q _ Q* eiwt (z) — (b* eiwt (258)
which on substitution gives
do* d do* - .

in which ¢* can be complex.
The use of Petrov—Galerkin or similar procedures on Eq. (2.57) or (2.59) can again
be made. If we pursue the line of approach outlined in Sec. 2.2.4 we note that

(a) the function p required to achieve self-adjointness remains unchanged;
and hence

(b) the weighting applied to achieve optimal results (see Sec. 2.2.3) again remains
unaltered — providing of course it is applied to all terms.

Although the above result is encouraging and permits the solution in the frequency
domain for transient problems, it does not readily ‘transplant’ to problems in which
time-stepping procedures are required.

Some further points require mentioning at this stage. These are simply that:

1. When pure convection is considered (that is £ = 0) only one boundary condition —
generally that giving the value of ¢ at the inlet — can be specified, and in such a case
the violent oscillations observed in Fig. 2.2 with standard Galerkin methods will
not occur generally.
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32 Convection dominated problems

2. Specification of no boundary condition at the outlet edge in the case when k > 0,
which is equivalent to imposing a zero conduction flux there, generally results in
quite acceptable solutions with standard Galerkin weighting even for quite high
Peclet numbers.

Part Il: Transients

2.5 Transients — introductory remarks

2.5.1 Mathematical background

The objective of this section is to develop procedures of general applicability for the
solution by direct time-stepping methods of Eq. (2.1) written for scalar values of ¢, F;
and G;:

o9 OF; 0G;

— 4+

though consideration of the procedure for dealing with a vector-valued function will
be included in Part III. However, to allow a simple interpretation of the various
methods and of behaviour patterns the scalar equation in one dimension [see
Eq. (2.10)], i.e.

dx  dx \| Ox

to%0) dp 0 [, 09
E+U8x Ox (k

) +0=0 (2.61a)
will be considered. This of course is a particular case of Eq. (2.60) in which F = F(¢),
U = 0F /0¢ and Q = Q(¢, x) and therefore

oF _oF oo _ 00
ox 0¢ Ox  Ox

(2.61b)

The problem so defined is non-linear unless U is constant. However, the non-con-
servative equations (2.61) admit a spatial variation of U and are quite general.

The main behaviour patterns of the above equations can be determined by a change
of the independent variable x to x such that

Noting that for ¢ = ¢(x}, t) we have
96 96 X, 96 96 96
il - iy 77 = _-U.: —- 2.
ot xconst axi ot * ot X' const Ul axi * ot X' const ( 63)

The one-dimensional equation (2.61a) now becomes simply

op 0 0p

T <kax,> +0(x) =0 (2.64)



Transients — introductory remarks
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Fig. 2.10 The wave nature of a solution with no conduction. Constant wave velocity U.

and equations of this type can be readily discretized with self-adjoint spatial operators
and solved by procedures developed previously in Volume 1.

The coordinate system of Eq. (2.62) describes characteristic directions and the
moving nature of the coordinates must be noted. A further corollary of the coordinate
change is that with no conduction or heat generation terms, i.e. when k =0 and
Q = 0, we have simply

9 _

ot

or (2.65)
é(x") = ¢(x — Ut) = constant

0

along a characteristic [assuming U to be constant, which will be the case if F = F(¢)].
This is a typical equation of a wave propagating with a velocity U in the x direction,
as shown in Fig. 2.10. The wave nature is evident in the problem even if the conduc-
tion (diffusion) is not zero, and in this case we shall have solutions showing a wave
that attenuates with the distance travelled.

2.5.2 Possible discretization procedures

In Part I of this chapter we have concentrated on the essential procedures applicable
directly to a steady-state set of equations. These procedures started off from some-
what heuristic considerations. The Petrov—Galerkin method was perhaps the most
rational but even here the amount and the nature of the weighting functions were a
matter of guess-work which was subsequently justified by consideration of the numer-
ical error at nodal points. The Galerkin least square (GLS) method in the same way
provided no absolute necessity for improving the answers though of course the least
square method would tend to increase the symmetry of the equations and thus could
be proved useful. It was only by results which turned out to be remarkably similar to
those obtained by the Petrov—Galerkin methods that we have deemed this method to
be a success. The same remark could be directed at the finite increment calculus (FIC)
method and indeed to other methods suggested dealing with the problems of steady-
state equations.

For the transient solutions the obvious first approach would be to try again the
same types of methods used in steady-state calculations and indeed much literature
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has been devoted to this.?*~* Petrov—Galerkin methods have been used here quite
extensively. However, it is obvious that the application of Petrov—Galerkin methods
will lead to non-symmetric mass matrices and these will be difficult to use for any
explicit method as lumping is not by any means obvious.

Serious difficulty will also arise with the Galerkin least squares (GLS) procedure
even if the temporal variation is generally included by considering space-time finite
elements in the whole formulation. This approach to such problems was made by
Nguen and Reynen,” Carey and Jieng,**** Johnson and coworkers’**>* and
others.””*® However the use of space-time elements is expensive as explicit procedures
are not available.

Which way, therefore, should we proceed? Is there any other obvious approach
which has not been mentioned? The answer lies in the wave nature of the equations
which indeed not only permits different methods of approach but in many senses is
much more direct and fully justifies the numerical procedures which we shall use.
We shall therefore concentrate on such methods and we will show that they will
lead to artificial diffusions which in form are very similar to those obtained previously
by the Petrov—Galerkin method but in a much more direct manner which is consistent
with the equations.

The following discussion will therefore be centred on two main directions: (1) the
procedures based on the use of the characteristics and the wave nature directly leading
to so-called characteristic Galerkin methods which we shall discuss in Sec. 2.6; and
then (2) we shall proceed to approach the problem through the use of higher-order
time approximations called Taylor—Galerkin methods.

Of the two approaches the first one based on the characteristics is in our view more
important. However for historical and other reasons we shall discuss both methods
which for a scalar variable can be shown to give identical answers.

The solutions of convective scalar equations can be given by both approaches very
simply. This will form the basis of our treatment for the solution of fluid mechanics
equations in Chapter 3, where both explicit iterative processes as well as implicit
methods can be used.

Many of the methods for solving the transient scalar equations of convective
diffusion have been applied to the full fluid mechanics equations, i.e. solving the
full vector-valued convective—diffusive equations we have given at the beginning of
the chapter (Eq. 2.1). This applies in particular to the Taylor—Galerkin method
which has proved to be quite successful in the treatment of high-speed compressible
gas flow problems. Indeed this particular approach was the first one adopted to solve
such problems. However, the simple wave concepts which are evident in the scalar
form of the equations do not translate to such multivariant problems and make the
procedures largely heuristic. The same can be said of the direct application of the
SUPG and GLS methods to multivariant problems. We have shown in Volume 1,
Chapter 12 that procedures such as GLS can provide a useful stabilization of
difficulties encountered with incompressibility behaviour. This does not justify their
widespread use and we therefore recommend the alternatives to be discussed in
Chapter 3.

For completeness, however, Part 111 of this chapter will be added to discuss to some
extent the extension of some methods to vector-type variables.
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2.6 Characteristic-based methods

2.6.1 Mesh updating and interpolation methods

We have already observed that, if the spatial coordinate is ‘convected’ in the manner
implied by Eq. (2.62), i.e. along the problem characteristics, then the convective, first-
order, terms disappear and the remaining problem is that of simple diffusion for
which standard discretization procedures with the Galerkin spatial approximation
are optimal (in the energy norm sense).

The most obvious use of this in the finite element context is to update the position
of the mesh points in a lagrangian manner. In Fig. 2.11(a) we show such an update for
the one-dimensional problem of Eq. (2.61) occurring in an interval Ar.

For a constant x’ coordinate

dx = Udr (2.66)

1 =0 4 At /gwractensnc

AN
Updated node

At position
tn
7 7 AN 5
k—h— Initial node
(a) Forward position
tn >
X

t1 =t - At

(b) Backward

Fig. 2.11 Mesh updating and interpolation: (a) Forward; (b) Backward.
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and for a typical nodal point i, we have

st
X :xHJ Udt (2.67)
In
where in general the ‘velocity” U may be dependent on x. However, if F = F(¢) and
U = 0F /0¢ = U(¢) then the wave velocity is constant along a characteristic by virtue
of Eq. (2.65) and the characteristics are straight lines.
For such a constant U we have simply

T = X+ UAL (2.68)

for the updated mesh position. This is not always the case and updating generally has
to be done with variable U.

On the updated mesh only the time-dependent diffusion problem needs to be
solved, using the methods of Volume 1. These we need not discuss in detail here.

The process of continuously updating the mesh and solving the diffusion problem
on the new mesh is, of course, impracticable. When applied to two- or three-dimen-
sional configurations very distorted elements would result and difficulties will always
arise on the boundaries of the domain. For that reason it seems obvious that after
completion of a single step a return to the original mesh should be made by inter-
polating from the updated values, to the original mesh positions.

This procedure can of course be reversed and characteristic origins traced back-
wards, as shown in Fig. 2.11(b) using appropriate interpolated starting values.

The method described is somewhat intuitive but has been used with success by
Adey and Brebbia*® and others as early as 1974 for solution of transport equations.
The procedure can be formalized and presented more generally and gives the basis of
so-called characteristic—Galerkin methods.*

The diffusion part of the computation is carried out either on the original or on the
final mesh, each representing a certain approximation. Intuitively we imagine in the
updating scheme that the operator is split with the diffusion changes occurring
separately from those of convection. This idea is explained in the procedures of the
next section.

2.6.2 Characteristic—Galerkin procedures

We shall consider that the equation of convective diffusion in its one-dimensional
form (2.61) is split into two parts such that

¢=¢" + 0" (2.69)
and
0¢" d9
E—F Ua— 0 (2.70a)

is a purely convective system while

™ 9 [ 9o B
<k8x> +0=0 (2.70b)

ot ox
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t"+ At = Y
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Fig. 2.12 Distortion of convected shape function.

represents the self-adjoint terms [here Q contains the source, reaction and term
(9U/0x)9)].
Both ¢" and ¢ are to be approximated by standard expansions
& =N¢* ™ =N~ (2.71)
and in a single time step 1" to 1"+ Ar=""" we shall assume that the initial
conditions are
Standard Galerkin discretization of the diffusion equation allows ﬂ)**"“ to be
determined on the given fixed mesh by solving an equation of the form
MAG™ = AH(P" + 0AG™™) + f (2.73)
with
(i)**n—o—l _ J)**n +A&)**n
In solving the convective problem we assume that ¢* remains unchanged along the
characteristic. However, Fig. 2.12 shows how the initial value of ¢ interpolated by

standard linear shape functions at time n [see Eq. (2.71)] becomes shifted and
distorted. The new value is given by

" T =N()O" y=x+ UAs (2.74)

As we require ¢ to be approximated by standard shape functions, we shall
write a projection for smoothing of these values as

#1141

Jﬂ NI(NG™ ' —N(»)¢™)dx =0 (2.75)
giving
Mot = JQ INTN( ) dx]¢" (2.76a)
where N = N(x) and M is
M = JQ N'Ndx (2.76b)
The evaluation of the above integrals is of course still complex, especially if

the procedure is extended to two or three dimensions. This is generally
performed numerically and the stability of the formulation is dependent on the
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accuracy of such integration.*® The scheme is stable and indeed exact as far as the
convective terms are concerned if the integration is performed exactly (which of
course is an unreachable goal). However, stability and indeed accuracy will even
then be controlled by the diffusion terms where several approximations have been
involved.

2.6.3 A simple explicit characteristic-Galerkin procedure

Many variants of the schemes described in the previous section are possible and were
introduced quite early. References 45—56 present some successful versions. However,
all methods then proposed are somewhat complex in programming and are time con-
suming. For this reason a simpler alternative was developed in which the difficulties
are avoided at the expense of conditional stability. This method was first published in
1984°7 and is fully described in numerous publications.”® ¢! Its derivation involves a
local Taylor expansion and we illustrate this in Fig. 2.13.
We can write Eq. (2.61a) along the characteristic as

%(X’(l), 1) — % (kgf,> -0(x)=0 (2.77)

As we can see, in the moving coordinate x’, the convective acceleration term
disappears and source and diffusion terms are averaged quantities along the charac-
teristic. Now the equation is self-adjoint and the Galerkin spatial approximation is
optimal. The time discretization of the above equation along the characteristic
(Fig. 2.13) gives

1 n+1 n ~ 0 a¢ (s
EW =" = e[ax (kax> - Q]

R RIP (- ] AL

where 6 is equal to zero for explicit forms and between zero and unity for semi- and
fully implicit forms. As we know, the solution of the above equation in moving
coordinates leads to mesh updating and presents difficulties, so we will suggest

¢n+1

00x=8) 0"

1k

8 =~ UAt
>

X

Fig. 2.13. A simple characteristic—Galerkin procedure.
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alternatives. From the Taylor expansion we have

bt o (AF) (2.79)

¢'7|(x—5)% n

and assuming 6§ = 0.5
96 Lo (05 6 0[0 (00 : |
L () 2 (12 - w[&(%)powm o

1 0"
3y =75~ 2 ax

(2.80b)

where ¢ is the distance travelled by the particle in the x-direction (Fig. 2.13) which is
6= UAt (2.81)

where U is an average value of U along the characteristic. Different approximations
of U lead to different stabilizing terms. The following relation is commonly used®*®

r 7 n n 8Un
U=U"-U"At o (2.82)
Inserting Eqs (2.79)—(2.82) into Eq. (2.78) we have
a¢n a a¢ 71+1/2
n+l _n Y b n+1/2
¢ ¢ A[{Uax Bx(k(')x) +0
At 0 [, ,00¢ A
OV A AL Y (AR R
where
09 R ) 09 1 09
ox ( 6x> _26’x( 8x) 3 ox ( 8x) (283)
and
n+1 n
o' 0 2+ 0 (2.83¢)

In the above equation, higher-order terms (from Eq. 2.80) are neglected. This, as
already mentioned, is of an identical form to that resulting from Taylor—Galerkin
procedures which will be discussed fully in the next section, and the additional
terms add the stabilizing diffusion in the streamline direction. For multidimensional
problems, Eq. (2.83a) can be written in indicial notation and approximating n + 1/2
terms with n terms (for the fully explicit form)

7+ 1 no__ a¢ 3} a(b
o= A’{ T, 8x5(6x>+Q}

At a 061 At O [d [ 06 20
+A’{ 2 o {UUa ] 2 Yon, [axi( axi>} U’a }

(2.84)
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An alternative approximation for U recently recommended is®

B Un+l + Un s
o=V Ve (2.85)
2
Using the Taylor expansion
aUﬂ
U'v_s) = U" — AtU"—— + O(AF) (2.86)

ox
from Eqs (2.78)—(2.81) and Eqgs (2.85) and (2.86) with 6 equal to 0.5 we have

7 2
1 UnJrI/Z% gUnaUn 8¢n +EU)1+1/2U}1+1/2@

- n+l _ n —
At(¢ ¢") ox 2 ox Ox 2 Ox?
6¢ n+1/2 Al n+1/2 a 8¢ n
+8x<k8x) 2V ax{ax (kax”
-0 +—= U"“/zzg (2.87)
where

Un+1/2 _ Un+l + Un
2

We can further approximate, as mentioned earlier, n + 1/2 terms using #n, to get the
fully explicit version of the scheme. Thus we have

(2.88)

U2 = U" 4+ 0(A) (2.89)

and similarly the diffusion term is approximated. The final form of the explicit
characteristic—Galerkin method can be written as

A¢:¢n+l _¢n:_Al|:Una¢_8< a¢> +Q:|

ox 0 ox
AP ”8 op 0 qu
+TU x {U 8x_8x( o )—FQ} (2.90)

Generalization to multidimensions is direct and can be written in indicial notation for
equations of the form Eq. (2.5):

Ad = Ar [3(U¢) 8}([( 3¢>+Q]

0x; 0x;
At o [0WU0) 0 (, 0¢
7 Ui oy Ox;. { Ox; - Ox; < Ox; + Q (291)

The reader will notice the difference in the stabilizing terms obtained by two
different approximations for U. However, as we can see the difference between
them is small and when U is constant both approximations give identical stabilizing
terms. In the rest of the book we shall follow the latter approximation and always use
the conservative form of the equations (Eq. 2.91).
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As we proved earlier, the Galerkin spatial approximation is justified when the
characteristic—Galerkin procedure is used. We can thus write the approximation

¢ =N (2.92)
and use the weighting NT in the integrated residual expression. Thus we obtain
M($" ! = §") = —A{(CP" + K" +1") — Ar(K, " +17)] (2.93)

in explicit form without higher-order derivatives and source terms. In the above
equation

0
axi

M:J N'NdQ czj NT = (UN)dQ
Q Q

(2.94)

ONT ON T
K = k— dQ f=| N QOdQ +b.t.
JQ 6)(,' 8)([ JQ Q +

and K, and f{ come from the new term introduced by the discretization along the
characteristics. After integration by parts, the expression of K, and f; is

1[ a T, O
K,=—= N N) dQ 2.
=3, ar N SN (295)
f ——1J i(UNT)QdQert (2.96)
s 2 ani ! o ’

where b.t. stands for integrals along region boundaries. Note that the higher-order
derivatives are not included in the above equation.

The approximation is valid for any scalar convected quantity even if that is the
velocity component U, itself, as is the case with momentum-conservation equations.
For this reason we have elaborated above the full details of the spatial approximation
as the matrices will be repeatedly used.

It is of interest that the explicit form of Eq. (2.93) is only conditionally stable. For
one-dimensional problems, the stability condition is given as (neglecting the effect of
sources)

h

for linear elements.
In two-dimensional problems the criteria time step may be computed as®>%
At At,
Atcrit = Al + A7 (298)

where Az, is given by Eq. (2.97) and Az, = i® /2k is the diffusive limit for the critical
one-dimensional time step.

Further, with Az = At the steady-state solution results in an (almost) identical
diffusion change to that obtained by using the optimal streamline upwinding
procedures discussed in Part I of this chapter. Thus if steady-state solutions are the
main objective of the computation such a value of Af should be used in connection
with the K,, term.
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1.0
Stability limit C = \/1/Pe + 1 — 1/Pe
Unstable
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0.6
S
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>
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0 ! ! ! ! ! ! !
0 1 2 3 4 5 6 7

Fig. 2.14 Stability limit for lumped mass approximation and optimal upwind parameter.

A fully implicit form of solution is an expensive one involving unsymmetric
matrices. However it is often convenient to apply 6 > 1/2 to the diffusive term
only. We call this a nearly (or semi) implicit form and if it is employed we return to
the stability condition

Aty = |h| (299)
which can present an appreciable benefit.
Figure 2.14 shows the stability limit variation prescribed by Eq. (2.97) with a
lumped mass matrix.
It is of considerable interest to examine the behaviour of the solution when the
steady state is reached — for instance, if we use the time-stepping algorithm of
Eq. (2.93) as an iterative process. Now the final solution is given by taking

¢n+l _ J)n _ &)
which gives
[(C+K— AK,d+f— Arf, =0 (2.100)

Inspection of Secs 2.2 and 2.3 shows that the above is identical in form with the use of
the Petrov—Galerkin approximation. In the latter the matrix Cis identical and the matrix
K, includes balancing diffusion of the amount given by %aUh. However, if we take

U*At
faUh = > (2.101)
the identity of the two schemes results. This can be written as a requirement that
UAt

where C is the Courant number.
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In Fig. 2.14 we therefore plot the optimal value of « as given in Eq. (2.25) against
Pe. We note immediately that if the time-stepping scheme is operated at or near the
critical stability limit of the lumped scheme the steady-state solution reached will be
close to that resulting from the optimal Petrov—Galerkin process for the steady state.
However, if smaller time steps than the critical ones are used, the final solution,
though stable, will tend towards the standard Galerkin steady-state discretization
and may show oscillations if boundary conditions are such that boundary layers
are created. Nevertheless, such small time steps result in very accurate transients so
we can conclude that it is unlikely that optimality for transients and steady state
can be reached simultaneously.

Examination of Eqgs (2.93) shows that the characteristic Galerkin algorithm could
have been obtained by applying a Petrov—Galerkin weighting

At ON'
N+ 2 Ui 0x;
to the various terms of the governing equation (2.60) excluding the time derivative
0¢ /0t to which the standard Galerkin weighting of NT is attached. Comparing the
above with the steady-state problem and the weighting given in Eq. (2.48) the connec-
tion is obvious.

A two-dimensional application of the characteristic—Galerkin process is illustrated
in Fig. 2.15 in which we show pure convection of a disturbance in a circulating flow. It
is remarkable to note that almost no dispersion occurs after a complete revolution.
The present scheme is here contrasted with the solution obtained by the finite
difference scheme of Lax and Wendroff® which for a regular one-dimensional
mesh gives a scheme identical to the characteristic—Galerkin except for mass
matrix, which is lumped in the finite difference scheme.

It seems that here the difference is entirely due to the proper form of the mass
matrix M now used and we note that for transient response the importance of the
consistent mass matrix is crucial. However, the numerical convenience of using
the lumped form is overwhelming in an explicit scheme. It is easy to recover the
performance of the consistent mass matrix by using a simple iteration. In this we
write Eq. (2.93) as

MA$" = AS” (2.103)
with S” being the right-hand side of Eq. (2.93) and

¢n+l — (T)n + A$;1

Substituting a lumped mass matrix M, to ease the solution process we can iterate as
follows:

(Ad)) = ML[AS" — M(AS)]_ 1] + (Ad), (2.104)

where / is the iteration number. The process converges very rapidly and in Fig. 2.16 we
show the dramatic improvements of results in the solution of a one-dimensional wave
propagation with three such iterations done at each time step. At this stage the results
are identical to those obtained with the consistent mass matrix.
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(c) Form after one revolution using lumped mass (Lax—Wendroff)

Fig. 2.15 Advection of a gaussian cone in a rotating fluid by characteristic—Galerkin method: (a) Original
form; (b) Form after one revolution using consistent M matrix; (c) Form after one revolution using lumped
mass (Lax—Wendroff).

2.6.4 Boundary conditions - radiation

As we have already indicated the convection—diffusion problem allows a single
boundary condition of the type

¢p=¢onT, (2.105a)
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Lumped/consistent M Courant number = 0.5 Courant number = 0.1

Lumped Lumped

N A VAW - U\ )
C=05,1T C=01,1T
~ N

C=0.5,2/T C=01,2/T

Consistent Consistent

=

C=0.5,3/T Cc=041,3T
(a) Courant number = 0.5 (b) Courant number = 0.1

Fig. 2.16 Characteristic—Galerkin method in the solution of a one-dimensional wave progression. Effect of
using a lumped mass matrix and of consistent iteration.

and

k(gﬁ) =qonl, (2.105b)
(where I' =T', UT')) to be imposed, providing the equation is of second order and
diffusion is present.

In the case of pure convection this is no longer the case as the differential equation
is of first order. Indeed this was responsible for the difficulty of obtaining a solution in
the example of Fig. 2.2 when Pe — oo and an exit boundary condition of the type
given by Eq. (2.105a) was imposed. In this one-dimensional case for pure convection
only the inlet boundary condition can be given; at the exit no boundary condition
needs to be prescribed if U, the wave velocity, is positive.

For multidimensional problems of pure convection the same wave specification
depends on the value of the normal component of U. Thus if

where n; is the normal direction vector, the wave is leaving the problem and then
no boundary condition is specified. If the problem has some diffusion, the same
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specification of ‘no boundary condition’ is equivalent to putting

(2

on =0

(2.107)

at the exit boundary.
In Fig. 2.17 we illustrate, following the work of Peraire,%> how cleanly the same
wave as that specified in the problem of Fig. 2.15 leaves the domain in the uniform
velocity field®"*® when the correct boundary condition is imposed.

)

)
i-*l':l:l:f:t:.:..
LK ICALK ) )

;i{qc{f
O

LK 3
LI
)
L)

i¢

Fig. 2.17 A gaussian distribution advected in a constant velocity field. Boundary condition causes
reflection.

no



Taylor—Galerkin procedures for scalar variables

2.7 Taylor—Galerkin procedures for scalar variables

In the Taylor—Galerkin process, the Taylor expansion in time precedes the Galerkin
space discretization. Firstly, the scalar variable ¢ is expanded by the Taylor series in
time>%

n+l _ n a¢n 7[82917” 3
o' =9 +Ata + > a2+O(At) (2.108)
From Eq. (2.61a) we have
0" 0¢ 8¢
TR [_Uﬁx+8x< I )-&—Q} (2.109)
and
>ro" 0 9 0 (, 00
5 az[_Uax+8x( )+Q} (2.110)

Substituting Eqs (2.109) and (2.110) into Eq. (2.108) we have

n+1 no__ 8¢ 0 a¢ ! AZZ 0 a¢ 0 8(;5
#T =g = A [Uax‘ax< ax)“?} _281[U6x_8x( 8x>+Q]
(2.111)

Assuming U and k to be constant we have

n+1 no__ %_8 a¢ _Ai @_ﬁ a¢
$ -9 __Al[Ua ax( Bx >+Q} 2 ox {Uaz o ( a:)*Q}

(2.112)

Inserting Eq. (2.109) into Eq. (2.112) and neglecting higher-order terms

n+1 n__ %_é 8¢
o 9= AZ{Ua 8x(8>+Q]

AP 20¢ o¢ ! 3
+— > ox [U I U8 (k& > + UQ} + O(Ar) (2.113)
As we can see the above equation, having assumed constant U and k, is identical to
Eq. (2.83a) derived from the characteristic approach. Clearly for scalar variables both
characteristic and Taylor—Galerkin procedures give identical stabilizing terms. Thus
selection of a method for a scalar variable is a matter of taste. However, the sound
mathematical justification of the characteristic—Galerkin method should be
mentioned here.

The Taylor—Galerkin procedure for the convection—diffusion equation in multi-
dimensions can be written as

n+1 8925 0 8¢
o= __Al{ T ox, ax,-( 8x>+Q

AL 9 0o 09
T {U,'Uj8 U,m( 8A>+UQH (2.114)

] J
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again showing the complete similarity with the appropriate characteristic—Galerkin
form and identity when U; and k are constant. The Taylor—Galerkin method is the
finite element equivalent of the Lax—Wendroff method developed in the finite differ-
ence context.**

2.8 Steady-state condition

Both the Taylor—Galerkin and characteristic—Galerkin methods give an answer
which compares directly with SUPG and GLS giving additional streamline diffusion
(higher-order derivatives are omitted)

AP 0 d¢
— — | U;U;— 2.115

2 8x,~ |: P axJ:| ( )
with Ar replacing the coefficient «h. With the characteristic—-Galerkin method
being the only method that has a full mathematical justification, we feel that even
for steady state problems this should be considered as an appropriate solution
technique.

2.9 Non-linear waves and shocks

The procedures developed in the previous sections are in principle of course available
for both linear and non-linear problems (with explicit procedures of time stepping
being particularly efficient for the latter). Quite generally the convective part of the
equation, i.e.

0¢ OF, _0¢ 0¢
ot ox; o Tox; =0 (2.116)
will have the vector U; dependent on ¢. Thus
OF;
U=—"=U; 2.117
=54 = U9 @117)
In the one-dimensional case with a scalar variable we shall have equations of the type
0p OF 0¢ 0¢p

= =7 g 2.11

ot a TV@g =0 (2.118)

corresponding to waves moving with a non-uniform velocity U. A typical problem in
this category is that due to Burger, which is defined by

8¢ 0 ¢
8t

In Fig. 2.18 we illustrate qualitatively how different parts of the wave moving with
velocities proportional to their amplitude cause it to steepen and finally develop into a
shock form. This behaviour is typical of many non-linear systems and in Chapter 6 we
shall see how shocks develop in compressible flow at transonic speeds.

(zcb ) = ¢ (2.119)
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Creation of a shock

Fig. 2.18 Progression of a wave with velocity U = ¢.
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Fig. 2.19 Development of a shock (Burger equation).
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To illustrate the necessity for the development of the shock, consider the propaga-
tion of a wave with an originally smooth profile illustrated in Fig. 2.19(a). Here as we
know the characteristics along which ¢ is constant are straight lines shown in
Fig. 2.19(b). These show different propagation speeds intersecting at time ¢ =2
when a discontinuous shock appears. This shock propagates at a finite speed
(which here is the average of the two extreme values).

In such a shock the differential equation is no longer valid but the conservation
integral is. We can thus write for a small length As around the discontinuity

0
EJAX ¢pds+ F(s+As)—F(s) =0 (2.120)

or
CAp— AF =0 (2.121a)

where C = lim As/At is the speed of shock propagation and A¢ and AF are the
discontinuities in ¢ and F respectively. Equation (2.121a) is known as the Rankine—
Hugoniot condition.

We shall find that such shocks develop frequently in the context of compressible
flow and shallow-water flow (Chapters 6 and 7) and can often exist even in the
presence of diffusive terms in the equation. Indeed, such shocks are not specific to
transients but can persist in the steady state. Clearly, approximation of the finite
element kind in which we have postulated in general a C, continuity to é can at
best smear such a discontinuity over an element length, and generally oscillations
near such a discontinuity arise even when the best algorithms of the preceding sections
are used.

Figure 2.20 illustrates the difficulties of modelling such steep waves occurring even
in linear problems in which the physical dissipation contained in the equations is
incapable of smoothing the solution out reasonably, and to overcome this problem
artificial diffusivity is frequently used. This artificial diffusivity must have the follow-
ing characteristics:

1. It must vanish as the element size tends to zero.
2. It must not affect substantially the smooth domain of the solution.

A typical diffusivity often used is a finite element version of that introduced by
Lapidus®’ for finite differences, but many other forms of local smoothing have
been proposed.®®® The additional diffusivity is of the form

k= Croph®| == (2.122)

ox

where the last term gives the maximum gradient.

In Fig. 2.21 we show a problem of discontinuous propagation in the Burger
equation and how a progressive increase of the Cy,, coeflicient kills spurious oscilla-
tion, but at the expense of rounding of a steep wave.
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Fig. 2.20 Propagation of a steep wave by Taylor-Galerkin process: (a) Explicit methods C = 0.5, step wave at
Pe = 12500; (b) Explicit methods C = 0.1, step wave at Pe = 12 500.

For a multidimensional problem with a multidimensional ¢ a degree of anisotropy
can be introduced and a possible expression generalizing (2.122) is

. a7
k; = L 2.123
ij CLap |V| ( )
where
¢

Other possibilities are open here and much current work is focused on the subject of
‘shock capture’. We shall return to these problems in Chapter 6 where its importance
in the high-speed flow of gases is paramount.

51



52 Convection dominated problems

C=0.1,CLap=0

A

Fig. 2.21 Propagation of a steep front in Burger's equation with solution obtained using different values of
Lapidus C, = Cizp.

C=0.1,Cpap=1

Part IlI: Vector-valued functions

2.10 Vector-valued variables

2.10.1 The Taylor-Galerkin method used for vector-valued
variables

The only method which adapts itself easily to the treatment of vector variables is that
of the Taylor—Galerkin procedure. Here we can repeat the steps of Sec. 2.8 but now
addressed to the vector-valued equation with which we started this chapter (Eq. 2.1).
Noting that now ® has multiple components, expanding ® by a Taylor series in time

we have®®7
o —a 4 A2 +A—’282—q’ (2.124)
B at n 2 812 n+60 .
where © is a number such that 0 < 6 < 1.
From Eq. (2.1),
o OF; 0G;
inlll IR et 2.125:
[5t]n [axl+ax,+Q:|n ( Sd)
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and differentiating

o’® 9 [OF, 0G,
o - 2.125b
|:812:|n+6 a |:({9Y a“i+Q:|n+6 ( )
In the above we can write
o (OF\ _ 0 (OF, 08\ 0 OF, G,
8:(%) _8x,-(a<1> 8t> - a[A (ax,+8xj+Q>} (2.125¢)

where A; = JF;/0® and if Q = Q(®, x) and 0Q/0® = S,

0Q 0Qo® OF; 0G;
5 0% 01 S((’?x O ,+Q) (2.125d)
We can therefore approximate Eq. (2.124) as
A@ﬂ = @ﬂ“rl _ (pn
OF; 0G; AP (D oF; 0G,
At{(‘?xi o } +2{8x,~ {A<ax+aﬁQ>]
0 0G; oF; 0G;
+E ox, +S<axj+axj+Q> }’H_e (2.126)

Omitting the second derivatives of G; and interpolating the n + 6 between n and n + 1
values we have

AP = (I)nJrl _ (I)n

8F, 6Gl a(;l
=-agire] ~af(FY, o+ [50-0)
APT O OF, OF,
+2[ax,-{A<a+Q)} (%*Qﬂme
AP 0 OF, oF;
+2[%{Ai(axjurQ)}+s(axj+Q)]n(1—9) (2.127)

At this stage a standard Galerkin approximation is applied which will result in a
discrete, implicit, time-stepping scheme that is unconditionally stable if 6 > % As
the explicit form is of particular interest we shall only give the details of the discreti-
zation process for § = 0. Writing as usual

® ~ No

we have

JNTNdQ Ad = —Ar| | NT OF; 8G
Q Q ox; 8x

Al 0 [ (0% 96,
SN (G +Q)}d9
OF, 0G,

+7JQN S<a+<3‘_,+Q> } (2.128)
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This can be written in a compact matrix form similar to Eq. (2.93) as

MA® = —Af[(C + K, +K)® +f]" (2.129a)
in which, with
foL
G = —kzi/a*xj

we have (on omitting the third derivative terms and the effect of S) matrices of the
form of Eq. (2.94), i.e.

C=| NTA, ON 40
9} axi
K, = Nt AA N 10
“ o Ox; / 2 ax;
Ko [ NN (2.129b)
_JQ axi v 8x, '

T ONT
f= N + A . QdQ2 + boundary terms
Q

M=| NTNdQ
Q

With 6 = 5 L it can be shown that the order of appr0x1mat10n increases and for this
scheme a simple iterative solution is p0551ble We note that with the consistent
mass matrix M the stability limit for § = 3 is increased to C = 1.

Use of 0 = apparently requires an implicit solution. However, similar iteration to
that used in Eq (2.104) is rapidly convergent and the scheme can be used quite
economically.

2.10.2 Two-step predictor-corrector methods. Two-step
Taylor-Galerkin operation

There are of course various alternative procedures for improving the temporal
approximation other than the Taylor expansion used in the previous section. Such
procedures will be particularly useful if the evaluation of the derivative matrix A
can be avoided. In this section we shall consider two predictor—corrector schemes
(of Runge—Kutta type) that avoid the evaluation of this matrix and are explicit.

The first starts with a standard Galerkin space approximation being applied to the
basic equation (2.1). This results in the form

dé
M$_M<I> Po+Pp+f=y (2.130)
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where again M is the standard mass matrix, f are the prescribed ‘forces’ and

OF;
Po(®) = [ NT - dQ 2.131
@) = | NG (2.131a)
represents the convective ‘forces’, while
PD(¢)=J LA (2.131b)
9 axi

are the diffusive ones.
If an explicit time integration scheme is used, i.e.

MA® = M(®" "' — &") = Any"(®") (2.132)

the evaluation of the right-hand side does not require the matrix product representa-
tion and A; does not have to be computed.

Of course the scheme presented is not accurate for the various reasons previously
discussed, and indeed becomes unconditionally unstable in the absence of diffusion and
external force vectors.

The reader can easily verify that in the case of the linear one-dimensional problem
the right-hand side is equivalent to a central difference scheme with ®/_; and &/
only being used to find the value of {)?“, as shown in Fig. 2.22(a).

The scheme can, however, be recast as a two-step, predictor—corrector operation
and conditional stability is regained. Now we proceed as follows:

Step 1. Compute " +1/2 using an explicit approximation of Eq. (2.132), i.e.

At
2

A E2AEN
n P v
‘ i1 i > -

i+

&)114-1/2 _ i)n + M—l‘lln (2133)

(a) Single-step explicit

t" + At

--------------------------------- ====t" 4+ 12AL

tn > e
i—1 i i+ 1 X

(b) Standard predictor—corrector

th+ At {1
AN
t se-Oee | ---O-- --e- N+ 1AL
t > —>
i—1 i i+1 X

(c) Local prediction—corrector
(two-step Taylor—Galerkin)

Fig. 2.22 Progression of information in explicit one- and two-step schemes.
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and

Step 2. Compute "1 inserting the improved value of 12

of Eq. (2.132), giving

in the right-hand side

i)nJrl — " +AZM71\|I’7+1/2 (2134)

This is precisely equivalent to the second-order Runge—Kutta scheme being applied
to the ordinary system of differential equations (2.130). Figure 2.22(b) shows in the
one-dimensional example how the information ‘spreads’, i.e. that now &' will be

dependent on values at nodes i — 2,...,i+ 2.
It is found that the scheme, though stable, is overdiffusive and numerical results are
poor.

An alternative is possible, however, using a two-step Taylor—Galerkin operation.
Here we return to the original equation (2.1) and proceed as follows:

Step 1. Find an improved value of " 1/2 using only the convective and source parts.

Thus
- OF}
‘I)n+l/2 ‘I’n _ n 2.135:
2 8%+Q (2.135a)
n+1/2

which of course allows the evaluation of F;
We note, however, that we can also write an approximate expansion as

At OF} At 0P"
F;.1+1/2 — F;? _ Fn n¥=
! Pty 2 ot 27 o
At OF, 0G; "
=F' - A L4+~ 2.135b
S ’(8&*6&-”) (2.135b)
This gives
oF; 0G; " 2 a1
A =~ (FTV 2.1
(Gt Go+Q) = E (2.135)

Step 2. Substituting the above into the Taylor—Galerkin approximation of
Eq. (2.128) we have

MA® = — Ar J (i, 9C: ‘+Q dQ+J N (FI 12 ZFydo
ox; 8, o  Ox;

+ J NTS(F/ T2 — F) dQ} (2.135d)
Q

and after integration by parts of the terms with respect to the x; derivatives we obtain
simply

MA® ——At{J ON'

a (Fn+1/2 + Gn) dQ + JNT[Q +S(Fn+l/2 Fn” do
Q

+J NT(F?“/2—|—G7)n,~dF} (2.136)
T



Vector-valued variables

We note immediately that:

1. The above expression is identical to using a standard Galerkin approximation on
Eq. (2.1) and an explicit step with F; values updated by the simple equation (2.135a).

2. The final form of Eq. (2.136) does not require the evaluation of the matrices A;
resulting in substantial computation savings as well as yielding essentially the
same results. Indeed, some omissions made in deriving Eqs (2.129) did not
occur now and presumably the accuracy is improved.

A further practical point must be noted:

3. In non-linear problems it is convenient to interpolate F; directly in the finite
element manner as

F,' :NFl

rather than to compute it as F;(®).

Thus the evaluation of F?H/ ? need only be made at the quadrature (integration)

points within the element, and the evaluation of " t1/? by Eq. (2.135a) is only
done on such points. For a linear triangle element this reduces to a single evaluation
of ®"*1/2 and F"*!/2 for each clement at its centre, taking of course ®"*'/? and
F'*1/2 as the appropriate interpolation average there.

In the simple one-dimensional linear example the information progresses in the
manner shown in Fig. 2.22(c). The scheme, which originated at Swansea, can be
appropriately called the Swansea two step,””*>>~% and has found much use in the
direct solution of compressible high-speed gas flow equations. We shall show some
of the results obtained by this procedure in Chapter 6. However in Chapter 3 we
shall discuss an alternative which is more general and has better performance. It is
of interest to remark that the Taylor—Galerkin procedure can be used in contexts
other than direct fluid mechanics. The procedure has been used efficiently by
Morgan et al.®'"** in solving electromagnetic wave problems.

2.10.3 Multiple wave speeds

When ¢ is a scalar variable, a single wave speed will arise in the manner in which we
have already shown at the beginning of Part II. When a vector variable is considered,
the situation is very different and in general the number of wave speeds will
correspond to the number of variables. If we return to the general equation (2.1),
we can write this in the form

0® 0® 0G;

TS
or Nox, T ox

+Q=0 (2.137)

where A, is a matrix of the size corresponding to the variables in the vector ®. This is
equivalent to the single convective velocity component 4 = U in a scalar problem and
is given as

OF,

A=5%

(2.138)
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This in general may still be a function of ®, thus destroying the linearity of the
problem.

Before proceeding further, it is of interest to discuss the general behaviour of
Eq. (2.1) in the absence of source and diffusion terms. We note that the matrices A;
can be represented as

A =XAX;! (2.139)
by a standard eigenvalue analysis in which A; is a diagonal matrix.
If the matrices X; are such that
X, =X (2.140)

which is always the case in a single dimension, then Eq. (2.137) can be written (in the
absence of diffusion or source terms) as

0B 0%

—+ XA X" 0 2.141
(91 + ! 3)6,» ( )
Premultiplying by X~! and introducing new variables (called Riemann invariants)
such that
¢=X"9 (2.142)

we can write the above as a set of decoupled equations in components ¢ of ¢ and
corresponding A of A:
o¢ o¢
T A —
a[ + laxi
each of which represents a wave-type equation of the form that we have previously
discussed. A typical example of the above results from a one-dimensional elastic

dynamics problem describing stress waves in a bar in terms of stresses (o) and
velocities (v) as

0 (2.143)

do ov

o Fax =
o0 100 _
ot pox

This can be written in the standard form of Eq. (2.1) with
- o)
v a/p
The two variables of Eq. (2.142) become

¢ =0 —cv ¢y =0+ cv

where ¢ = \/E/p and the equations corresponding to (2.143) are

o6, Opy
o T 0
9y 0 _
ot ox

representing respectively two waves moving with velocities +c.
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Unfortunately the condition of Eq. (2.140) seldom pertains and hence the deter-
mination of general characteristics and therefore decoupling is not usually possible
for more than one space dimension. This is the main reason why the extension of
the simple, direct procedures is not generally possible for vector variables. Because
of this we shall in Chapter 3 only use the upwinding characteristic-based procedures
on scalar systems for which a single wave speed exists and this retains justification of
any method proposed.

2.11 Summary and concluding remarks

The reader may well be confused by the variety of apparently unrelated approaches
given in this chapter. This may be excused by the fact that optimality guaranteed
by the finite element approaches in elliptic, self adjoint problems does not auto-
matically transfer to hyperbolic non-self adjoint ones.

The major part of this chapter is concerned with a scalar variable in the convec-
tion—diffusion reaction equation. The several procedures presented for steady-state
and transient equations yield identical results. However the characteristic—Galerkin
method is optimal for transient problems and gives identical stabilizing terms to
that derived by the use of Petrov—Galerkin, GLS and other procedures when the
time step used is near the stability limit. For such a problem the optimality is assured
simply by splitting the problem into the self-adjoint part where the direct Galerkin
approximation is optimal and an advective motion where the unknown variable
remains fixed in the characteristic space.

Extension of the various procedures presented to vector variables has been made in
the past and we have presented the Taylor—Galerkin method in this context; however
its justification is more problematic. For this reason we recommend that when dealing
with equations such as those arising in the motion of a fluid an operator split is made
in a manner separating several scalar convection—diffusion problems for which the
treatment described is used. We shall do so in the next chapter when we introduce
the CBS algorithm using the characteristic-based split.

References

1. A.N. Brooks and T.J.R. Hughes. Streamline upwind/Petrov—Galerkin formulation for
convection dominated flows with particular emphasis on the incompressible Navier
Stokes equation. Comp. Meth. Appl. Mech. Eng., 32, 199-259, 1982.

2. R. Courant, E. Isaacson and M. Rees. On the solution of non-linear hyperbolic differential
equations by finite differences. Comm. Pure Appl. Math., V, 243-55, 1952.

3. A.K. Runchall and M. Wolfstein. Numerical integration procedure for the steady state
Navier—Stokes equations. J. Mech. Eng. Sci., 11, 445-53, 1969.

4. D.B. Spalding. A novel finite difference formulation for differential equations involving
both first and second derivatives. Int. J. Num. Meth. Eng., 4, 551-9, 1972.

5. K.E. Barrett. The numerical solution of singular perturbation boundary value problem.
Q. J. Mech. Appl. Math., 27, 57-68, 1974.

6. O.C. Zienkiewicz, R.H. Gallagher and P. Hood. Newtonian and non-Newtonian viscous
incompressible flow. Temperature induced flows and finite element solutions, in The

59



60 Convection dominated problems

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Mathematics of Finite Elements and Applications (ed. J. Whiteman), Vol. II, Academic
Press, London, 1976 (Brunel University, 1975).

. L. Christie, D.F. Griffiths, A.R. Mitchell and O.C. Zienkiewicz. Finite element methods for

second order differential equations with significant first derivatives. Int. J. Num. Meth.
Eng., 10, 1389-96, 1976.

. O.C. Zienkiewicz, J.C. Heinrich, P.S. Huyakorn and A.R. Mitchell. An upwind finite

element scheme for two dimensional convective transport equations. Int. J. Num. Meth.
Eng., 11, 131-44, 1977.

. J.C. Heinrich and O.C. Zienkiewicz. Quadratic finite element schemes for two dimensional

convective—transport problems. Int. J. Num. Meth. Eng., 11, 1831-44, 1977.

. D.W. Kelly, S. Nakazawa and O.C. Zienkiewicz. A note on anisotropic balancing dissipa-

tion in the finite element method approximation to convective diffusion problems. Int. J.
Num. Meth. Eng., 15, 1705-11, 1980.

. B.P. Leonard. A survey of finite differences of opinion on numerical muddling of the

incomprehensible defective confusion equation, in Finite Elements for Convection
Dominated Flows (ed. T.J.R. Hughes), AMD Vol. 34, ASME, 1979.

G.L. Guymon, V.H. Scott and L.R. Herrmann. A general numerical solution of the two
dimensional diffusion—convection equation by the finite element method. Water Resources
Res., 6, 1611-17, 1970.

T.J.R. Hughes and J.D. Atkinson. A variational basis of ‘upwind’ finite elements, in
Variational Methods in the Mechanics of Solids (ed. S. Nemat-Nasser), pp. 387-91,
Pergamon Press, Oxford, 1980.

G.F. Carey. Exponential upwinding and integrating factors for symmetrization. Comm.
Appl. Num. Mech., 1, 57-60, 1985.

J. Donea, T. Belytschko and P. Smolinski. A generalized Galerkin method for steady state
convection—diffusion problems with application to quadratic shape function. Comp. Meth.
Appl. Mech. Eng., 48, 25-43, 1985.

T.J.R. Hughes, L.P. Franca, G.M. Hulbert, Z. Johan and F. Sakhib. The Galerkin
least square method for advective diffusion equations, in Recent Developments in Com-
putational Fluid Mechanics (eds T.E. Tezduyar and T.J.R. Hughes), AMD 95, ASME,
1988.

E. Onfate. Derivation of stabilized equations for numerical solution of advective—
diffusive transport and fluid flow problems. Comp. Meth. Appl. Mech. Eng., 151, 233—65,
1998.

S. Nakazawa, J.F. Pittman and O.C. Zienkiewicz. Numerical solution of flow and heat
transfer in polymer melts, in Finite Elements in Fluids (eds R.H. Gallagher et al.), Vol. 4,
chap. 13, pp. 251-83, Wiley, Chichester, 1982.

R. Codina, E. Onate and M. Cervera. The intrinsic time for the streamline upwind
Petrov—Galerkin formulation using quadratic elements. Comp. Meth. Appl. Mech. Eng.,
94, 239-62, 1992.

R. Codina. Stability analysis of forward Euler scheme for convection diffusion equation
using the SUPG formulation in space. Int. J. Num. Meth. Eng., 36, 1445—64, 1993.

J.T. Oden, I. Babuska and C.E. Baumann. A discontinuous hp finite element method for
diffusion problems. J. Comp. Phys., 146, 491-519, 1998.

C.E. Baumann and J.T. Oden. A discontinuous hp finite element method for convection
diffusion problems. Comp. Meth. Appl. Mech. Eng., 175, 311-41, 1999.

C.E. Baumann and J.T. Oden. A discontinuous hp finite element method for the Euler and
Navier—Stokes equations. Int. J. Num. Meth. Fluids 31, 79-95, 1999.

T.J.R. Hughes and A. Brooks. A multi-dimensional upwind scheme with no cross wind
diffusion, in Finite Elements for Convection Dominated Flows (ed. T.J.R. Hughes), AMD
34, ASME, 1979.



25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

References

T.J.R. Hughes and A.N. Brooks. A theoretical framework for Petrov—Galerkin methods
with discontinuous weighting function, in Finite Elements in Fluids (eds R.H. Gallagher
et al.), Vol. 4, pp. 47-65, Wiley, Chichester, 1982.

C. Johnson and A. Szepessy. On the convergence of a finite element method for a nonlinear
hyperbolic conservation law. Math. Comput., 49, 427-44, 1987.

F. Shakib, T.R.J. Hughes and Z. Johan. A new finite element formulation for computa-
tional fluid dynamics: X. The compressible Euler and Navier—Stokes equations. Comp.
Meth. Appl. Mech. Eng., 89, 141-219, 1991.

R. Codina. A discontinuity capturing crosswind—dissipation for the finite element solution
of convection diffusion equation. Comp. Meth. Appl. Mech. Eng., 110, 325-42, 1993.

P. Nithiarasu, O.C. Zienkiewicz, B.V.K.S. Sai, K. Morgan, R. Codina and M. Vazquez.
Shock capturing viscosities for the general fluid mechanics algorithm. Int. J. Num. Meth.
Fluids, 28, 1325-53, 1998.

C. Johnson, V. Nivert and J. Pitkédranta. Finite element methods for linear, hyperbolic
problems. Comp. Meth. Appl. Mech. Eng., 45, 285-312, 1984.

P.A.B. de Sampaio. A modified operator analysis of convection diffusion problems,
in Proc. Il National Meeting on Thermal Sciences, Aguas de Lindoia (Brazil). pp. 180-3,
1988.

N. Nguen and J. Reynen. A space—time least square finite element scheme for advection—
diffusion equations. Comp. Meth. Appl. Mech. Eng., 42, 331-42, 1984.

G.F. Carey and B.N. Jiang. Least square finite elements for first order hyperbolic systems.
Int. J. Num. Meth. Eng., 26, 81-93, 1988.

B.N. Jiang and G.F. Carey. A stable least-square finite element method for non-linear
hyperbolic problems. Int. J. Num. Meth. Fluids, 8, 933—42, 1988.

C. Johnson. Streamline diffusion elements for problems in fluid mechanics, in Finite
Elements In Fluids (eds R.H. Gallagher et al.), Vol. 6, pp. 251-61, Wiley, Chichester, 1986.
C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Element
Method. Cambridge University Press, Cambridge, 1987.

C.C. Yu and J.C. Heinrich. Petrov—Galerkin methods for the time dependent convective
transport equation. Int. J. Num. Meth. Eng., 23, 883-901, 1986.

C.C. Yu and J.C. Heinrich. Petrov—Galerkin method for multidimensional, time depen-
dent convective diffusion equation. Int. J. Num. Meth. Eng., 24, 220115, 1987.

C.E. Baumann, M.A. Storti and S.R. Idelsohn. A Petrov—Galerkin technique for the
solution of transonic and supersonic flows. Comp. Meth. Appl. Mech. Eng., 95, 49-70, 1992.
P.A.B. de Sampaio, P.R.M. Lyra, K. Morgan and N.P. Weatherill. Petrov—Galerkin solu-
tions of the incompressible Navier—Stokes equations in primitive variables with adaptive
remeshing. Comp. Meth. Appl. Mech. Eng., 106, 143-78, 1993.

J.A. Cardle. A modification of the Petrov—Galerkin method for the transient convection
diffusion equation. Int. J. Num. Meth. Eng., 38, 171-81, 1995.

S.R. Idelsohn, J.C. Heinrich and E. Onate. Petrov—Galerkin methods for the transient
advective—diffusive equation with sharp gradients. Int. J. Num. Meth. Eng., 39, 1455-73,
1996.

R. Codina. Comparison of some finite element methods for solving the diffusion—convec-
tion—reaction equation. Comp. Meth. Appl. Mech. Eng., 156, 185-210, 1998.

P.K. Maji and G. Biswas. Analysis of flow in the spiral casing using a streamline upwind
Petrov—Galerkin method. Int. J. Num. Meth. Eng., 45, 147-74, 1999.

R.A. Adey and C.A. Brebbia. Finite element solution of effluent dispersion, in Numerical
Methods in Fluid Mechanics (eds C.A. Brebbia and J.J. Connor). pp. 325-54, Pentech
Press, Southampton, 1974.

K.W. Morton. Generalised Galerkin methods for hyperbolic problems. Comp. Meth. Appl.
Mech. Eng., 52, 847-71, 1985.

61



62 Convection dominated problems

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

R.E. Ewing and T.F. Russell. Multistep Galerkin methods along characteristics for
convection—diffusion problems, in Advances in Computation Methods for PDEs (eds
R. Vichnevetsky and R.S. Stepleman), Vol. IV, IMACS, pp. 28—36, Rutgers University,
Brunswick, N.J., 1981.

J. Douglas, Jr and T.F. Russell. Numerical methods for convection dominated diffusion
problems based on combining the method of characteristics with finite element or finite
difference procedures. SIAM J. Num. Anal., 19, 871-85, 1982.

O. Pironneau. On the transport diffusion algorithm and its application to the Navier—
Stokes equation. Num. Math., 38, 309-32, 1982.

M. Bercovier, O. Pironneau, Y. Harbani and E. Levine. Characteristics and finite element
methods applied to equations of fluids, in The Mathematics of Finite Elements and Applica-
tions (ed. J.R. Whiteman), Vol. V, pp. 471-8, Academic Press, London, 1982.

J. Goussebaile, F. Hecht, C. Labadie and L. Reinhart. Finite element solution of the
shallow water equations by a quasi-direct decomposition procedure. Int. J. Num. Meth.
Fluids, 4, 1117-36, 1984.

M. Bercovier, O. Pironneau and V. Sastri. Finite elements and characteristics for some
parabolic—hyperbolic problems. Appl. Math. Modelling, 7, 89-96, 1983.

J.P. Benque, J.P. Gregoire, A. Hauguel and M. Maxant. Application des Methodes du
decomposition aux calculs numeriques en hydraulique industrielle, in INRIA, 6th Coll.
Inst. Methodes de Calcul Sci. et Techn., Versailles, 12—16 Dec. 1983.

A. Bermudez, J. Durany, M. Posse and C. Vazquez. An upwind method for solving
transport—diffusion—reaction systems. Int. J. Num. Meth. Eng., 28, 2021-40, 1984.

P.X. Lin, K.W. Morton and E. Suli. Characteristic Galerkin schemes for scalar conserva-
tion laws in two and three space dimensions. SIAM J. Num. Anal., 34, 779-96, 1997.

O. Pironneau, J. Liou and T.T.I. Tezduyar. Characteristic Galerkin and Galerkin least
squares space-time formulations for the advection—diffusion equation with time dependent
domain. Comp. Meth. Appl. Mech. Eng., 100, 117—41, 1992.

0O.C. Zienkiewicz, R. Lohner, K. Morgan and S. Nakazawa. Finite elements in fluid
mechanics — a decade of progress, in Finite Elements in Fluids (eds R.H. Gallagher et al.),
Vol. 5, chap. 1, pp. 1-26, Wiley, Chichester, 1984.

R. Lohner, K. Morgan and O.C. Zienkiewicz. The solution of non-linear hyperbolic
equation systems by the finite element method. Int. J. Num. Meth. Fluids, 4, 1043—-63,
1984.

0.C. Zienkiewicz, R. Lohner, K. Morgan and J. Peraire. High speed compressible flow and
other advection dominated problems of fluid mechanics, in Finite Elements in Fluids (eds
R.H. Gallagher et al.), Vol. 6, chap. 2, pp. 41-88, Wiley, Chichester, 1986.

R. Lohner, K. Morgan and O.C. Zienkiewicz. An adaptive finite element procedure for
compressible high speed flows. Comp. Meth. Appl. Mech. Eng., 51, 441-65, 1985.

0.C. Zienkiewicz, R. Lohner and K. Morgan. High speed inviscid compressive flow by the
finite element method, in The Mathematics of Finite Elements and Applications (ed. J.R.
Whiteman), Vol. VI, pp. 1-25, Academic Press, London, 1985.

0.C. Zienkiewicz and R. Codina. A general algorithm for compressible and incompressible
flow — Part I. The split, characteristic based scheme. Int. J. Num. Meth. Fluids, 20, 869—85,
1996.

0.C. Zienkiewicz, P. Nithiarasu, R. Codina and M. Vazquez. The Characteristic Based
Split procedure: An efficient and accurate algorithm for fluid problems. Int. J. Num.
Meth. Fluids, 31, 359-92, 1999.

P.D. Lax and B. Wendroff. Systems of conservative laws. Comm. Pure Appl. Math., 13,
217-37, 1960.

J. Peraire. A finite method for convection dominated flows. Ph.D. thesis, University of
Wales, Swansea, 1986.



66

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

References

. J. Donea. A Taylor—Galerkin method for convective transport problems. Int. J. Num.
Meth. Eng., 20, 101-19, 1984.

A. Lapidus. A detached shock calculation by second order finite differences. J. Comp.
Phys., 2, 154-77, 1967.

J.P. Boris and D.L. Brook. Flux corrected transport I Shasta — a fluid transport algorithm
that works. J. Comp. Phys., 11, 38—69, 1973.

S.T. Zalesiak. Fully multidimensional flux corrected transport algorithm for fluids.
J. Comp. Phys., 31, 335-62, 1979.

V. Selmin, J. Donea and L. Quatrapelle. Finite element method for non-linear advection.
Comp. Meth. Appl. Mech. Eng., 52, 817-45, 1985.

L. Bottura and O.C. Zienkiewicz. Experiments on iterative solution of the semi-implicit
characteristic Galerkin algorithm. Comm. Appl. Num. Meth., 6, 38793, 1990.

R. Lohner, K. Morgan, J. Peraire, O.C. Zienkiewicz and L. Kong. Finite element methods
for compressible flow, in Numerical Methods in Fluid Dynamics (ed. K.W. Morton and M.J.
Baines), Vol. 11, pp. 27-52, Clarendon Press, Oxford, 1986.

J. Peraire, K. Morgan and O.C. Zienkiewicz. Convection dominated problems, in Numer-
ical Methods for Compressible Flows — Finite Difference, Element and Volume Techniques,
AMD 78, pp. 129-47, ASME, 1987.

0.C. Zienkiewicz, J.Z. Zhu, Y.C. Liu, K. Morgan and J. Peraire. Error estimates and
adaptivity. From elasticity to high speed compressible flow, in The Mathematics of Finite
Elements and Applications (ed. J.R. Whiteman), Vol. VII, Academic Press, London, 1988.
J. Peraire, J. Peiro, L. Formaggia, K. Morgan and O.C. Zienkiewicz. Finite element Euler
computations in three dimensions. 414 A4 26th Aerospace Sciences Metting, paper AIAA-
87-0032, Reno, USA, January 1988.

J. Peraire, J. Peiro, L. Formaggia, K. Morgan and O.C. Zienkiewicz. Finite element Euler
computations in 3-D. Int. J. Num. Meth. Eng., 26, 2135-59, 1988.

R. Lohner, K. Morgan, J. Peraire and M. Vahdati. Finite element, flux corrected transport
(FEM-FCT) for the Euler and Navier—Stokes equations. Int. J. Num. Meth. Fluids, 7,
1093-109, 1987.

R. Lohner, K. Morgan and O.C. Zienkiewicz. The use of domain splitting with an explicit
hyperbolic solver. Comp. Meth. Appl. Mech. Eng., 45, 313-29, 1984.

R. Léhner and K. Morgan. An unstructured multigrid method for elliptic problems. Int. J.
Num. Meth. Eng., 24, 101-15, 1987.

0.C. Zienkiewicz. Explicit (or semiexplicit) general algorithm for compressible and incom-
pressible flows with equal finite element interpolation. Report 90.5, Chalmers Technical
University, Gothenborg, 1990.

K. Morgan, O. Hassan and J. Peraire. A time domain unstructured grid approach to
simulation of electromagnetic scattering in piecewise homogeneous media. Comp. Meth.
Appl. Mech. Eng., 134, 17-36, 1996.

K. Morgan, P.J. Brookes, O. Hassan and N.P. Weatherill. Parallel processing for the
simulation of problems involving scattering of electromagnetic waves. Comp. Meth.
Appl. Mech. Eng., 152, 157-74, 1998.

63



A general algorithm for
compressible and incompressible
flows — the characteristic-based

split (CBS) algorithm

3.1 Introduction

In the first chapter we have written the fluid mechanics equations in a very general
format applicable to both incompressible and compressible flows. The equations
included that of energy which for compressible situations is fully coupled with
equations for conservation of mass and momentum. However, of course, the
equations, with small modifications, are applicable for specialized treatment such
as that of incompressible flow where the energy coupling disappears, to the problems
of shallow-water equations where the variables describe a somewhat different flow
regime. Chapters 4—7 deal with such specialized forms.

The equations have been written in Chapter 1 in fully conservative, standard form
[Eq. (1.1)] but all the essential features can be captured by writing the three sets of
equations as below.

Mass conservation

o _1ap_ v
o ot 0Ox;

(3.1)

where ¢ is the speed of sound and depends on E, p and p and assuming constant
entropy

2w (3.2)

dp p

where  is the ratio of specific heats equal to ¢,/c,. For a fluid with a small compres-
sibility

c=— (3.3)

where K is the bulk modulus. Depending on the application we use the appropriate
relation for ¢°.
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Momentum conservation

8Ui 0 a’Tl‘j_ (9]7

- __Z (uU. _ po. 4
3[ axj (u/ Ul) + axj 3)(,- PEi (3 )

In the above we define the mass flow fluxes as
Ui = pu (3:5)

Energy conservation
O(pE) 0 0 oT 1o} 0

= —— (upE) +— | k _ " (y = (. 3.6
o1 o, PE) T 5 \Fam ) ~ o, (P) g, (i) (36)

In all of the above u; are the velocity components; p is the density, E is the specific
energy, p is the pressure, T is the absolute temperature, pg; represents body forces
and other source terms, k is the thermal conductivity, and 7;; are the deviatoric
stress components given by (Eq. 1.12b)

B au,- 67/!1 2 8uk
= o0 7

where ¢;; is the Kroneker delta = 1, if i = jand = 0if i # . In general, 1 in the above
equation is a function of temperature, u(7'), and appropriate relations will be used.
The equations are completed by the universal gas law when the flow is coupled and
compressible:

p = pRT (3.8)

where R is the universal gas constant.

The reader will observe that the major difference in the momentum-conservation
equations (3.4) and the corresponding ones describing the behaviour of solids (see
Volume 1) is the presence of a convective acceleration term. This does not lend
itself to the optimal Galerkin approximation as the equations are now non-self-
adjoint in nature. However, it will be observed that if a certain operator split is
made, the characteristic—Galerkin procedure valid only for scalar variables can be
applied to the part of the system which is not self-adjoint but has an identical form
to the convection—diffusion equation. We have shown in the previous chapter that
the characteristic—Galerkin procedure is optimal for such equations.

It is important to state again here that the equations given above are of the
conservation forms. As it is possible for non-conservative equations to yield multiple
and/or inaccurate solutions (Appendix A), this fact is very important.

We believe that the algorithm introduced in this chapter is currently the most
general one available for fluids, as it can be directly applied to almost all physical
situations. We shall show such applications ranging from low Mach number viscous
or indeed inviscid flow to the solution of hypersonic flows. In all applications the
algorithm proves to be at least as good as other procedures developed and we see
no reason to spend much time describing alternatives. We shall note however that
the direct use of the Taylor—Galerkin procedures which we have described in the
previous chapter (Sec. 2.10) have proved quite effective in compressible gas flows
and indeed some of the examples presented will be based on such methods. Further,
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in problems of very slow viscous flow we find that the treatment can be almost
identical to that of incompressible elastic solids and here we shall often find it
expedient to use higher-order approximations satisfying the incompressibility condi-
tions (the so-called BabuSka—Brezzi restriction) given in Chapter 12 of Volume 1.
Indeed on certain occasions the direct use of incompressibility stabilizing processes
described in Chapter 12 of Volume 1 can be useful.

The governing equations described above, Eqs (3.1)—(3.8), are often written in non-
dimensional form. The scales used to non-dimensionalize these equations vary
depending on the nature of the flow. We describe below the scales generally used in
compressible flow computations:

f:tuoo. f:ﬁ- p:i~ 7= P .
L’ L Poc’ Pocti’ (39)
U; — E —  Tc Ve .
w=—; E=—>; T=>' =5
Use U, U, ui

where an over-bar indicates a non-dimensional quantity, subscript co represents a free
stream quantity and L is a reference length. Applying the above scales to the govern-
ing equations and rearranging we have the following form:

Conservation of mass

ap 1 9p ou;

oi @ o 0w .
Conservation of momentum
%:—%(wu>+,€i€a<g§”—%+p& (3.11)
where
Re:qu; E:gizL; -V (3.12)
v Uso Vref

are the Reynolds number, non-dimensional body forces and the viscosity ratio respec-
tively. In the above equation v is the kinematic viscosity equal to 11/ p with u being the
dynamic viscosity.

Conservation of energy

O(pE) o _ _— 1 o (0T 0, _ 1 0, __ _
— = ——(u; pE) + —— K'— | —— (@ — cu;) (3.13
8[ ax—j(u]p )+R6Pr8x—l ax—l 8x—,(u] p)+Reax—I(V Tl_/ uj) ( )
where Pr is the Prandtl number and k" is the conductivity ratio given by the relations
KCp .k
Pr= ; =— .14
’ kref7 k kref (3 )

where k¢ is a reference thermal conductivity.
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Equation of state

L N e )
=pRT =p
¢ ol
In the above equation R = ¢, — ¢, is used. The following forms of non-dimensional
equations are useful to relate the speed of sound, temperature, pressure, energy, etc.

T 1

I

p= T (3.15)

E=_+yut

F=nr-1T (3.16)
— 10U

7= (v—1)|pE — = 2L

P=0 )(p 3 p)

The above non-dimensional equations are convenient when coding the CBS
algorithm. However, the dimensional form will be retained in this and other chapters
for clarity.

3.2 Characteristic-based split (CBS) algorithm
3.2.1 The split — general remarks

The split follows the process initially introduced by Chorin'? for incompressible flow
problems in the finite difference context. A similar extension of the split to finite
element formulation for different applications of incompressible flows have been
carried out by many authors.> >’ However, in this chapter we extend the split to
solve the fluid dynamics equations of both compressible and incompressible forms
using the characteristic—Galerkin procedure.”® ™ The algorithm in its full form
was first introduced in 1995 by Zienkiewicz and Codina®®?’ and followed several
years of preliminary research.*’ !

Although the original Chorin split'? could never be used in a fully explicit code, the
new form is applicable for fully compressible flows in both explicit and semi-implicit
forms. The split provides a fully explicit algorithm even in the incompressible case for
steady-state problems now using an ‘artificial’ compressibility which does not affect
the steady-state solution. When real compressibility exists, such as in gas flows, the
computational advantages of the explicit form compare well with other currently
used schemes and the additional cost due to splitting the operator is insignificant.
Generally for an identical cost, results are considerably improved throughout a
large range of aerodynamical problems. However, a further advantage is that both
subsonic and supersonic problems can be solved by the same code.

3.2.2 The split - temporal discretization

We can discretize Eq. (3.4) in time using the characteristic—Galerkin process. Except
for the pressure term this equation is similar to the convection—diffusion equation
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(2.11). This term can however be treated as a known (source type) quantity providing
we have an independent way of evaluating the pressure. Before proceeding with the
algorithm, we rewrite Eq. (3.4) in the form given below to which the characteris-
tic—Galerkin method can be applied

8U,‘ 8 67—1“ n o)
]

ox

7

with Q”“’2 being treated as a known quantity evaluated at 1 = /" + 6,At in a time
increment Atz. In the above equation

9 n+06,
(AL 3.18
Ql axi ( N )
with
apn+92 aanrl apn
= 1 — .1
ox, 0> ox, + (1= 62) ox, (3.19)
or
8pn+92 apl‘l 8Ap
ox; 8_xi+ % Ox; (:20)
In this
Ap=p''—p (3.21)

Using Eq. (2.91) of the previous chapter and replacing ¢ by U;, we can write

0 oT;
1 [ 2 +0,
Uit - Ul = AZ{_axj(u"U")? + axlj/ +077" = (pg)"

. (At 9 ( 2 W) _Q[ergi))"] (3.22)

7 g \

At this stage we have to introduce the ‘split’ in which we substitute a suitable
approximation for Q which allows the calculation to proceed before p"*! is
evaluated. Two alternative approximations are useful and we shall describe these as
Split A and Split B respectively. In the first we remove all the pressure gradient
terms from Eq. (3.22); in the second we retain in that equation the pressure gradient
corresponding to the beginning of the step, i.e. dp"/dx;. Though it appears that the
second split might be more accurate, there are other reasons for the success of the
first split which we shall refer to later. Indeed Split A is the one which we shall

universally recommend.

Split A
In this we introduce an auxiliary variable U; such that
AU =U; - U!
0 oy At 0 [0 "
= At|—=— wU) + =L — pgi + —uj — | =— (u;U; ; 3.23
8xj~ (”j z) + 8xj pgi+ D Uy ax, (axj (u/ 1) + pgz>:| ( )



Characteristic-based split (CBS) algorithm 69

This equation will be solved subsequently by an explicit time step applied to the
discretized form and a complete solution is now possible. The ‘correction’ given
below is available once the pressure increment is evaluated:

op"" AP 9]

AU, =U'' — U= AU — A -= 3.24
i i i i t axi B Uy axk ( )
From Eq. (3.1) we have
1Y ourt? our AU,
Ap = (C2> Ap = —At (9)(?[ = —At |:ax[ + 91 aXi :| (325)

Replacing U,f”l by the known intermediate, auxiliary variable U; and rearranging
after neglecting higher-order terms we have

1 n
Ap= (| Ap=—-At 0, ———— Atf 0 3.26
p (C2> P 3)6,- + ! 8}(,’ ! 8x,-axl- + 2 axl’axl’ ( )

our AAU; < ' 32Ap>

where the U; and pressure terms in the above equation come from Eq. (3.24).

The above equation is fully self-adjoint in the variable Ap (or Ap) which is the
unknown. Now a standard Galerkin-type procedure can be optimally used for
spatial approximation. It is clear that the governing equations can be solved after
spatial discretization in the following order:

(a) Eq. (3.23) to obtain AU/,
(b) Eq. (3.26) to obtain Ap or Ap;
(c) Eq. (3.24) to obtain AU, thus establishing the values at /"'

After completing the calculation to establish AU; and Ap (or Ap) the energy
equation is dealt with independently and the value of (pE)"*! is obtained by the
characteristic—Galerkin process applied to Eq. (3.6).

It is important to remark that this sequence allows us to solve the governing
equations (3.1), (3.4) and (3.6), in an efficient manner and with adequate numerical
damping. Note that these equations are written in conservation form. Therefore,
this algorithm is well suited for dealing with supersonic and hypersonic problems,
in which the conservation form ensures that shocks will be placed at the right position
and a unique solution achieved.

Split B
In this split we also introduce an auxiliary variable U;* now retaining the known
values of Qf = 9p"/dx;, i.e.

AU = UP — U”

0]

J

oy op At 9 (D !

(3.27)
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It would appear that now U;”" is a better approximation of U"*!. We can now write
the correction as

OAp
6.)(,‘
i.e. the correction to be applied is smaller than that assuming Split A, Eq. (3.24).
Further, if we use the fully explicit form with #, = 0, no mass velocity (U;) correction
is necessary. We proceed to calculate the pressure changes as in Split A as

1 ou” OAU;™ FAp

Ap= ?Ap = A Ox; 0x; ox?

AU; = UM - U= AU — ,At (3.28)

+ 0,

— A16,6, (3.29)

The solution stages follow the same steps as in Split A.

3.2.3 Spatial discretization and solution procedure

Split A

In all of the equations given below the standard Galerkin procedure is used for spatial
discretization as this was fully justified for the characteristic—Galerkin procedure in
Chapter 2. We now approximate spatially using standard finite element shape
functions as

Ui == Nuﬁj AU, == NLlAﬁi AUZ* == NHAUT

~ ~ R (3.30)
U = Nuui P = Npp p= Npp
In the above equation
U= v - U - Ut
(3.31)
N=[N" N ... N ... N

where k is the node (or variable) identifying number (and varies between 1 and m).

Before introducing the above relations, we have the following weak form of
Eq. (3.23) for the standard Galerkin approximation (weighting functions are the
shape functions)

J NEAUF dQ
Q

n

9] ONk !

k u k

— — (U — | == d0 — )dO
JQN (y;U;)d JQ Y 7;;d JQ N, (pg:)d

AP d . d "
5 UQ%(MJNM) <8x(ujUi) + Pgi> dQ]

"

+ At Ur N7 n; dF} (3.32)

It should be noted that in the above equations the weighting functions are the shape
functions as the standard Galerkin approximation is used. Also here, the viscous and
stabilizing terms are integrated by parts and the last term is the boundary integral
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arising from integrating by parts the viscous contribution. Since the residual on the
boundaries can be neglected, other boundary contributions from the stabilizing terms
are negligible. Note from Eq. (2.91) that the whole residual appears in the stabilizing
term. However, we have omitted higher-order terms in the above equation for clarity.

As mentioned in Chapter 1, it is convenient to use matrix notation when the finite
element formulation is carried out. We start here from Eq. (1.7) of Chapter 1 and we
repeat the deviatoric stress and strain relations below

where the quantity in brackets is the deviatoric strain. In the above
1 (Ou; Ouy
s= = : : .34
%i T3 (axj +ax,-) (3:34)
and
. Ou;
€ij = 8x;~ (3.35)

We now define the strain in three dimensions by a six-component vector (or in two
dimensions by a three-component vector) as given below (dropping the dot for
simplicity)

€ = [611 €y €33 2512 2523 2531 ]T: [Ex &y & 25\.}, 25);: 252x]T (336)

with a matrix m defined as

m=[1 110 0 0] (3.37)
We find that the volumetric strain is
€, =€ Tenten=cecte te = m'e (3.38)
The deviatoric strain can now be written simply as (see Eq. 3.33)
e/ =¢—lme, = (I-imm")e =1, (3.39)
where
I, =(I-imm") (3.40)
and thus
r 2 -1 -1 0 0 07
-1 2 -1 0 0 0
-t -1 -1 2.0 00 (3.41)
0 0 0 3 00
0 0 00 3 0
L 0O 0 0 0 0 3]

If stresses are similarly written in vectorial form as
T
6=[oy o0pn ox op 03 03] (3.42)

where of course oy, is identically equal to o, and is also equal to 7;; — p with similar
expressions for o, and o, while o, is identical to 7,, etc.
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Immediately we can assume that the deviatoric stresses are proportional to the
deviatoric strains and write directly from Eq. (3.33)
6/ =16 = plpe? = n(ly — %mmT)é (3.43)
where the diagonal matrix I is
9 -

(3.44)

1

To complete the vector derivation the velocities and strains have to be appropri-
ately related and the reader can verify that using the tensorial strain definitions we

can write
€ =Su (3.45)
where
u=[w w w]" (3.46)
and S is an appropriate strain matrix (operator) defined below
F 9 -
o, 0 0
0
0 Frs 0
o o 2
8X3
S = R . (3.47)
sz Bxl
o 2 9
8X3 8x2
0 0
0 =
8)(3 8x1

where the subscripts 1, 2 and 3 correspond to the x, y and z directions, respectively.
Finally the reader will note that the direct link between the strains and velocities will
involve a matrix B defined simply by

B = SN, (3.48)
Now from Egs. (3.30), (3.32) and (3.43), the solution for U; in matrix form is:

Step 1
AU* = -M,'Ar[(C,U + K,i — f) — At(K,U +f,)]" (3.49)

where the quantities with a ~ indicate nodal values and all the discretization matrices
are similar to those defined in Chapter 2 for convection—diffusion equations (Eqs. 2.94
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and 2.95) and are given as

M= [ NN = | NT (v do
“ ¢ (3.50)
K = J B u(ly —imm")BdQ  f= J N pgdQ +J NIt dr
Q Q T

where g is [g; g g3]T and t? is the traction corresponding to the deviatoric stress
components. The matrix K, is also defined at several places in Volume 1 (for instance
A in Chapter 12).

In Eq. (3.49) K,, and f; come from the terms introduced by the discretization along
the characteristics. After integration by parts, the expressions for K, and f; are

K, = —%JQ(VT(uNu))T(VT(uNu)) dQ (3.51)
and
£ =4 (V"N o (3.52)
The weak form of the density—pressure equation is

1
NEA dQ:J N ApdQ
J&'Z ’ p Q pC2 4

.0
=—Ar| NF
th P ox;

aNk n+0,
:AzJ L U;’+01<AU§‘—At6[(; )

QO axi Xi

i

n+0,
(U,’-’ 1 0,AU — elmap ) do
ox

dQ

n-+0,

_AZHIJ N, (U{’+AU§‘—AZ % )nidF (3.53)
r

Xi

In the above, the pressure and AU; terms are integrated by parts. Further we shall
discretize p directly only in problems of compressible gas flows and therefore below
we retain p as the main variable. Spatial discretization of the above equation gives
Step 2

(M, + AP9,0,H)Ap = Af[GU" + 6,GAU" — A, Hp" — f] (3.54)
which can be solved for Ap.

The new matrices arising here are

H= J (VN,)'VN,d2 M, = J N, (12> N, dQ
Q Q C

G= J (VN,)'N,dQ  f, = AzJ Ny [U" + 6, (AU" — Arvp" )] dl (3.55)
Q r

In the above f, contains boundary conditions as shown above as indicated. We
shall discuss these forcing terms fully in a later section as this form is vital to the
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success of the solution process. The weak form of the correction step from Eq. (3.25) is

, m A
J N{jAUf“dQ:J N{;AU,-*dQ—AZJ NE(9P 1 9,227 4
(9] 0 0 ax,' axl'

op"
3xi

The final stage of the computation of the mass flow vector U ! is completed by
following matrix form

(”ij;)

2
—A—’J 0 a0 (3.56)

2987)9

Step 3

AU = AU* — M, ' At {GT@” + 0,Ap) + %Pﬁ” (3.57)

where
P= Jq(V(uNu))TVNp dQ (3.58)

At the completion of this stage the values of U" ™! and p" ! are fully determined
but the computation of the energy (pE)”Jrl is needed so that new values of ¢!,
the speed of sound, can be determined.

Once again the energy equation (3.6) is identical in form to that of the scalar
problem of convection—diffusion if we observe that p, U, etc. are known. The
weak form of the energy equation is written using the characteristic—Galerkin
approximation of Eq. (2.91) as

J NEA(pE)" 1 dQ
Q

= At

B ONE oT !
Jo N ox, (u;(pE + p)) dQ Jﬂ o, (T,]u] + k@x,») dQ}

APT[ @ N "
— || =—(u — (—u;(pE Q
5| [, e ) | (uto + ) a2
: oT "
k
With
pE=NyE T =N;T (3.60)
we have
Step 4

AE = —M;'At[CLE + C,p + K, T + K i+ f, — At(K,E + K, p+f,)]" (3.61)

where E contains the nodal values of pE and again the matrices are similar to those
previously obtained (assuming that pE and 7 can be suitably scaled in the conduction
term).
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The matrices and forcing vectors are again similar and given as
Mg = J NENgdQ  Cp= J N;V'(uNpdQ C, = J NEV'(uN,)dQ
Q Q Q

Ky = J (VN)"AVN7dQ K,z = J B u(Ty — 2mm")BdQ
’ ! (3.62)

K.z = —%J (V'(uNg) " (VNp)dQ  f, = J Nin' (t'u+kVT)dl
Q r
Ky =4, (V"N T(VN,) a0

The forcing term f,; contains source terms. If no source terms are available this term is
equal to zero.

It is of interest to observe that the process of Step 4 can be extended to include in an
identical manner the equations describing the transport of quantities such as turbu-
lence parameters,36 chemical concentrations, etc., once the first essential Steps 1-3
have been completed.

Split B
With Split B, the discretization and solution procedures have to be modified slightly.
Leaving the details of the derivation to the reader and using identical discretization
processes, the final steps can be summarized as:
Step 1
TRk —1 - ~ T~ . At ~ 8

AU = M, At|[(C,U+K,u+ G p—f) — At KuU—i—fS—FTPp (3.63)

where all matrices are the same as in Split A except the forcing term f which is

f= J NI pgdQ + J NIt/ dr (3.64)
Q T

since the pressure term has now been integrated by parts

Step 2
(M, + AZ0,0,H)Ap = At[GU" + 6,GAU™ —{,]" (3.65)
and
Step 3
AU = AU - M, ' At[6,G" Ap| (3.66)

Step 4, calculation of the energy, is unchanged. The reader can notice the minor
differences in the above equations from those of Split A.
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3.3 Explicit, semi-implicit and nearly implicit forms

This algorithm will always contain an explicit portion in the first characteristic—
Galerkin step. However the second step, i.e. that of the determination of the pressure
increment, can be made either explicit or implicit and various possibilities exist here
depending on the choice of #,. Now different stability criteria will apply. We refer to
schemes as being fully explicit or semi-implicit depending on the choice of the
parameter 6, as zero or non-zero, respectively.

It is also possible to solve the first step in a partially implicit manner to avoid severe
time step restrictions. Now the viscous term is the one for which an implicit solution is
sought. We refer to such schemes as quasi- (nearly) implicit schemes. It is necessary to
mention that the fully explicit form is only possible for compressible gas flows for
which ¢ # oo.

3.3.1 Fully explicit form

In fully explicit forms, % < 6; <1 and 6, =0. In general the time step limitations
explained for the convection—diffusion equations are applicable i.e.

h

At ——
¢+ |u

(3.67)

as viscosity effects are generally negligible here.

This particular form is very successful in compressible flow computations and has
been widely used by the authors for solving many complex problems. Chapter 6 pre-
sents many examples.

3.3.2 Semi-implicit form

In semi-implicit form the following values apply

<6,<1
(3.68)

[STE ST

<60, <1

Again the algorithm is conditionally stable. The permissible time step is governed by
the critical step of the characteristic—Galerkin explicit relation solved in Step 1 of the
algorithm. This is the standard convection—diffusion problem discussed in Chapter 2
and the same stability limits apply, i.e.

At < At, = |f,l| (3.69)
and/or
W
At < At, =— (3.70)

2v
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where v is the kinematic viscosity. A convenient form incorporating both limits can be
written as

A< At At,

< — 71
At, + At, (3.71)

The reader can verify that the above relation will give appropriate time step limits
with and without the domination of viscosity.

For slightly compressible or incompressible problems in which M,, is small or zero
the semi-implicit form is efficient and it should be noted that the matrix H of
Egs. (3.54) and (3.65) does not vary during the computation process. Therefore H
can be factored into its triangular parts once leading to an economical direct pro-
cedure. As will be seen from the final chapter on computer programming the implicit
equation is usually solved by conjugate gradient procedures.

3.3.3 Quasi- (nearly) implicit form

To overcome the severe time step restriction made by the diffusion terms (viscosity,
thermal conductivity, etc.), these terms can be treated implicitly. This involves solving
separately an implicit form connecting the viscous terms with U} or U;”. Here, at each
step, simultaneous equations need to be solved and this procedure can be of great
advantage in certain cases such as high-viscosity flows and low Mach number
flows.!*1>234 Now the only time step limitation is Az < h/|u| which appears to be
a very reasonable and physically meaningful restriction.

3.3.4 Evaluation of time step limit. Local and global time steps

Though they are defined in terms of element sizes the time step limits are best
calculated at nodes of the element. In Fig. 3.1 the manner in which the size of the
element is easily established at nodes is shown. In such cases, as seen, the element
size is not unique for each node. In the calculation, we shall specify, if the scheme
is conditionally stable, the time step limit at each node by assigning the minimum

Fig. 3.1 Element sizes at different nodes of a linear triangle.
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value for such nodes calculated from all the surrounding elements. When a problem is
being solved in true time then obviously the smallest of all nodal values has to be
adopted for the solution. In many problems a transient calculation is adopted to
find steady-state solutions and /local time stepping is convenient as it allows more
rapid convergence and fewer time steps to be used throughout the problem. Local
time stepping can only be applied to problems in which (1) the mass matrix is
lumped and (2) the steady-state solution does not itself depend on the mass matrix.
Thus with local time stepping we shall use at every node simply the minimum time
step found at that node. This of course is equivalent to assuming identical time
steps for the whole problem and simply adjusting the lumped masses. Such a problem
with adjusted lumped masses is still physically and mathematically meaningful and we
know that the convergence will be achieved as it invariably is.

Many steady-state problems have used such localized time stepping in the
calculations.

In the context of local and global time stepping it is interesting to note that the
stabilizing terms introduced by the characteristic—Galerkin process will not take on
the optimal value for any element in which the time step differs from the critical
one; that is of course if we use local time stepping we shall automatically achieve
this optimal value often throughout all elements at least for steady-state problems.
However, on other occasions it may be useful to make sure that (a) in all elements
we introduce optimal damping and (b) that the progressive time step for all elements
is identical. The latter of course is absolutely necessary if for instance we deal with
transient problems where all time steps are real. For such cases it is possible to
consider the At as being introduced in two stages: (1) as the Atf. which has of
course to preserve stability and must be left at a minimum Af calculated from any
element; and (2) to use in the calculation of each individual element the At which
is optimal for an element, as of course exceeding the stability limit does not matter
there and we are simply adding better damping characteristics.

This internal—external subdivision is of some importance when incompressibility
effects are considered. As shown in the next section, the stabilizing diagonal term
occurs in steady-state problems depending on the size of the time step. If the mesh
is graded and very small elements dictate the time step over the whole domain we
might find that the diagonal term introduced overall is not sufficient to preserve
incompressibility. For such problems we recommend the use of internal and external
time steps which differ and we introduce these in reference 52.

3.4 'Circumventing’ the Babuska—Brezzi (BB) restrictions

In the previous sections we have not restricted the nature of the interpolating shape
functions N,, and N,,. If we choose these interpolations in a manner satisfying the
patch test conditions or BB restriction for incompressibility, see Chapter 12,
Volume 1 (Chapter 4 of this volume for some permissible interpolations) then of
course completely incompressible problems can be dealt with without any special dif-
ficulties by both Split A and Split B formulations. However Split A introduces an
important bonus which permits us to avoid any restrictions on the nature of the
two shape functions used for velocity and pressure. Let us examine here the structure
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of the equations obtained in steady-state conditions. For simplicity we shall consider
here only the Stokes form of the governing equations in which the convective terms
disappear. Further we shall take the fluid as incompressible and thus uncoupled
from the energy equations. Now the three steps of Eqgs. (3.49), (3.54) and (3.57) are
written as

AU = —AM,, ' [K 0" — f]

1
- A19,6,

AU = AU" — A/M, 'GT(p" + 0, Ap)

Ap H '[GU" + 0,GAU* — A0, Hp" — 1, (3.72)

In steady state we have Ap = AU = 0 and eliminating AU* we can write (dropping
now the superscript #)

Ka+G'p=f (3.73)
from the first and third of Eqgs. (3.72) and
GU + 0, AtGM,,'G,,p — A1), Hp — f, = 0 (3.74)

from the second and third of Egs. (3.72)
We finally have a system which can be written in the form

Kr/p GT ﬁ fl
G A0,[GM,'GT H]] { ; } = {fz} (3.75)

here f; and f, arise from the forcing terms.

The system is now always positive definite and therefore leads to a non-singular
solution for any interpolation functions N,, N, chosen. In most of the examples
discussed in this book and elsewhere equal interpolation is chosen for both the U;
and p variables, i.e. N, = N,. We must however stress that any other interpolation
can be used without violating the stability. This is an important reason for the
preferred use of the Split A form.

It can be easily verified that if the pressure gradient term is retained as in Eq. (3.27),
i.e. if we use Split B the lower diagonal term of Eq. (3.75) is identically zero and the BB
conditions in the full scheme cannot be avoided. Now we show this below. From
Eqgs. (3.63), (3.65) and (3.66), for incompressible Stokes flow we have

AU = -M, ' Ar[K, i+ GTp — )]

N | .
Ap = H ' A/[GU" AU™ — )" .
N (GU" + 6,GAU™ — 1] (3.76)

AU = AU — M, ' At[6,G" Ap|
At steady state Ap = AU = 0, which gives the following two equations:
K,i+Gp=f (3.77)
and
GU =f, (3.78)
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Note that AU;™ is zero from the third of Eq. (3.76). As in Split A we can write the

following system
} f
ul_Jh (3.79)
p f;

where f; and f, arise from the forcing terms as in the Split A form. Clearly here the BB
restrictions are not circumvented.

Itis interesting to observe that the lower diagonal term which appeared in Eq. (3.75)
is equivalent to the difference between the so-called fourth-order and second-order
approximations of the laplacian. This justifies the use of similar terms introduced
into the computation by some finite difference proponents.*

K. /p G
G 0

3.5 A single-step version

If the AU; term in Eq. (3.26) is omitted, the intermediate variable U; need not be
determined. Instead we can directly calculate p (or p), U; and pE. This of course
introduces an additional approximation.

The use of the approximation of Eq. (3.1) is not necessary in any expected fully
explicit scheme as the density increment is directly obtained if we note that

M,Ap = M, Ap (3.80)

With the above simplifications and Split A we can return to the original equations
and using the Galerkin approximation. We can therefore write directly

~ OF; 0G; "

A® = —MulAtU NT< L4+ ) dQ —%Atj NTDdQ} (3.81)
0 8)(,‘ ax,- QO

omitting the source terms for clarity (F; and G; are explained in Chapter 1, Eq. (1.25))

and noting that now ® denotes all the variables. The added stabilizing terms D are

defined below and have to be integrated by parts in the usual manner.

82

2
91 axiax,»

p

oo op
ui@Tc, ij(ujp”l)"'aixl

i 210 puy) + 2P ]
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8o op ]
Hlafcl _8*)9(%'0“3) + o)

a[o
”"aTci {83(, (u;pE + ujp)]

The added ‘diffusions’ are simple and are streamline oriented, and thus do not mask
the true effects of viscosity as happens in some schemes (e.g. the Taylor—Galerkin
process).



Boundary conditions

If only steady state results are sought it would appear that A7 multiplying the
matrix D should be set at its optimal value of Af.; &~ h/|u| and we generally recom-
mend, providing the viscosity is small, this value for the full scheme.*

However the oversimplified scheme of Eq. (3.81) can lose some accuracy and even
when steady state is reached will give slightly different results than those obtained
using the full sequential updating.*® However at low Mach numbers the difference
is negligible as we shall show later in Sec. 3.7. The small additional cost involved in
computing the two-step sequence AU* — Ap — AU — AE will have to be balanced
against the accuracy increase. In general, we have found that the two-step version is
preferable.

However it is interesting to consider once again the performance of the single-step
scheme in the case of Stokes equations as we did for the other schemes in the previous
section. After discretization we have, omitting convective terms, only one additional
diffusion term which arises (Eq. 3.82) in the mass conservation equation. After

discretization, in steady state
U f
b= (3.83)
P f>

Clearly the single-step algorithm retains the capacity of dealing with full incom-
pressibility without stability problems but of course can only be used for the nearly
incompressible range of problems for which M,, exists. We should remark here that
this formulation now achieves precisely the same stabilization as that suggested by
Brezzi and Pitkiranta,>* see Chapter 12, Volume 1.

We shall note the performance of single- and two-step algorithms in Sec. 3.7 of
this chapter.

K./p G'
G 6,AH

3.6 Boundary conditions
3.6.1 Fictitious boundaries

In a large number of fluid mechanics problems the flow in open domains is
considered. A typical open domain describing flow past an aircraft wing is shown
in Fig. 3.2. In such problems the boundaries are simply limits of computation and
they are therefore fictitious. With suitable values specified at such boundaries,
however, accurate solution for the flow inside the isolated domain can be achieved.
Generally as the distance from the object grows, the boundary values tend to those
encountered in the free domain flow or the flow at infinity. This is particularly true at
the entry and side boundaries shown in Fig. 3.2. At the exit, however, the conditions
are different and here the effect of the introduced disturbance can continue for a very
large distance denoting the wake of the problem. We shall from time to time discuss
problems of this nature but here we shall simply make the following remarks.

1. If the flow is subsonic the specification of all quantities excepting the density can be
made on both the side and entry boundaries.
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SIDE
(Free-stream) EXIT
"
—> Uy = 0
INLET t,=0| (A)
(Free-stream) SLIP or NO-SLIP (parallel flow)
—>
th = (T11, T12)a| (B)
—> ealeb
Xz
SIDE

(Free-stream)

X4

Fig. 3.2 Fictitious and real boundaries.

2. Whereas for supersonic flows all the variables can be prescribed at the inlet, at the
exit however no boundary conditions are imposed simply because by definition the
disturbances caused by the boundary conditions cannot travel faster than the
speed of sound.

With subsonic exit conditions the situation is somewhat more complex and here
various possibilities exist. We again illustrate such conditions in Fig. 3.2.

Condition A: Denoting the most obvious assumptions with regard to the traction and
velocities.

Condition B: A more sophisticated condition of zero gradient of traction and stresses
existing there. Such conditions will of course always apply to the exit domains for
incompressible flow. Condition B was first introduced by Zienkiewicz et al.*’ and is
discussed fully by Papanastasiou e al.>> This condition is of some importance as it
gives remarkably good answers.

We shall refer to these open boundary conditions in various classes of problems
dealt with later in this book and shall discuss them in detail. In particular the kind
of differences that may occur in incompressible flows in conduits under different
exit conditions are considered.

Of considerable importance, especially in view of the new schemes, are however
conditions which we will encounter on real boundaries.

3.6.2 Real boundaries

By real boundaries we mean limits of fluid domains which are physically defined and
here three different possibilities exist.



Boundary conditions

1. Solid boundaries with no slip conditions: On such boundaries the fluid is assumed to
stick or attach itself to the boundary and thus all velocity components become
zero. Obviously this condition is only possible for viscous flows.

2. Solid boundaries in inviscid flow (slip conditions): When the flow is inviscid we will
always encounter slipping boundary conditions where only the normal velocity
component is specified and is in general equal to zero in steady-state motion.
Such boundary conditions will invariably be imposed for problems of Euler
flow whether it is compressible or incompressible.

3. Prescribed traction boundary conditions: The last category is that on which tractions
are prescribed. This includes zero traction in the case of free surfaces of fluids or any
prescribed tractions such as those caused by wind being imposed on the surface.

These three basic kinds of boundary conditions have to be imposed on the fluid
and special consideration has to be given to these when split operator schemes
are used.

3.6.3 Application of real boundary conditions in the
discretization using the CBS split

We shall first consider the treatment of boundaries described under (1) or (2) of the
previous section. On such boundaries

u, =0, normal velocity zero (3.84)
and either
t, =0, tangential traction zero for inviscid flow
or (3.85)
u, =0, tangential velocity zero for viscous flow

In early applications of the CBS algorithm it appeared correct that when comput-
ing AU} no velocity boundary conditions be imposed and to use instead the value of
boundary tractions which corresponds to the deviatoric stresses and pressures com-
puted at time 7,. We note that if the pressure is removed as in Split A these pressures
could also be removed from the boundary traction component. However in Split B no
such pressure removal is necessary. This requires, in viscous problems, evaluation of
the boundary 7;;’s and this point is explained further later.

When computing Ap or A, we integrate by parts obtaining (Eq. 3.53)

J N dQ——AzJ N AU*-@AzM dQ
Q pcz ¥4 - Q paxi i 1 i 1 axi
6Nk n+06,
:Atj LUt 460, AU,»*—Atap n;dT’
[¢) 8)(1‘ (9)(,'

ale—ﬁz
—AZJ len{U;’+01 (AU;; - A )] dr (3.86)
T

Xi
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Here #n; is the outward drawn normal. The last term in the above equation is identi-
cally equal to zero from the condition of Eq. (3.24):

Un :l’liU,' =n;

n—+0,
U+ 0, <AU§‘ - Atapa )] -0 (3.87)

Xi

for conditions of Eq. (3.84). For non-zero normal velocity this would simply become
the specified normal velocity. This point seems to have baffled some investigators who
simply assume

op dp
o A 2 _0 3.88
on ' Ox; (3.:88)
on solid boundaries. Note that this is not exactly true.

Returning to the traction on the boundaries, the traction on the surface can be
defined as

ti = Tij”j — pn; (389)

Prescribing the above traction using Split A, we replace the stress components in
Step 1 (last term in Eq. (3.32)) as follows

) Nirn; dT + L NE(t; + pn;) AT (3.90)

t t

r TA

where I, represents the part of the boundary where the traction is prescribed.

The above calculation may involve a substantial error in ‘projecting’ deviatoric
stresses onto the boundary.

The last step requires the solution for the velocity correction terms to obtain finally
the U *1. Clearly correct velocity boundary values must always be imposed in this
step.

Although the above described procedure is theoretically correct and instructive,
better results will generally be obtained if the velocity boundary conditions are
directly imposed when computing U;. Further, the need of calculating any boundary
tractions from internal stress is now avoided even if the tangential velocity is taken as
zero (no slip condition).

If tractions are specified we shall generally now put the total at Step 1 when com-
puting U, even though at this stage we should subtract the pressure terms as shown
in Eq. (3.90). In Step 3, no further modification is needed and, hence, again we avoid
the need to compute additional boundary integrals. However, we are still faced with
evaluating pressures on such boundaries as these are needed in solving Step 2 [namely
Eq. (3.86)]. This still involves the determination of deviatoric stresses on the surface
(namely Section 12.7.6 of Volume 1, where we discussed application of the CBS
algorithm to solid mechanics problems) and showed boundary pressures computed
as n;7;n; + —n;t;. Fortunately, on free surfaces of the fluid, the deviatoric stresses
are usually negligible and here direct use of the pressure approximated by —#n;f;
may be used.



The performance of two- and single-step algorithms on an inviscid problem

3.7 The performance of two- and single-step algorithms
on an inviscid problem

In this section we demonstrate the performance of the single- and two-step algorithms
via an inviscid problem of subsonic flow past a NACA0012 aerofoil. The problem
domain and finite element mesh used are shown in Fig. 3.3(a) and (b). The discretiza-
tion near the acrofoil surface is finer than that of other places and a total number of
969 nodes and 1824 elements are used in the mesh.

YAYA
(a) (b)
1.500
1.450 —
) 1_438 L Multi-step
ﬂ 1350 e Single step
+w 1.300
>1.250
‘@ 1.200
81150 (-
1.100
1.050 —
1.000 L1
0 250 500 750 1000 1250 1500
No. of iterations
(c)M=0.5
1.500 1.500
Multi-step Single step
. 1.250 — . 1.250 —
w tw
-} -
> >
§ 1.000k z; 1.000[\
[ f}
8 0.750 |- © 0.750 |-
0.500 ' ' ' ' 0.500 ' ' ' '
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Iterations Iterations
(d) M=1.2 (e)

Fig. 3.3 Inviscid flow past a NACA0012 aerofoil o = 0: (a) Unstructured mesh 1824 elements and 969
nodes; (b) Details of mesh near stagnation point; (c) Convergence for M = 0.5 with two and single step,
fully explicit form; (d) Convergence for M = 1.2 for two-step scheme; (e) Convergence for M = 1.2 for
single-step scheme.
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The inlet Mach number is assumed to be equal to 0.5 and all variables except the
density are prescribed at the inlet. The density is imposed at the exit of the domain.
Both the top and bottom sides are assumed to be symmetric with normal component
of velocity equal to zero. A slipping boundary is assumed on the surface of the
aerofoil. No additional viscosity in any form is used in this problem when we use
the CBS algorithm. However other schemes do need additional diffusions to get a
reasonable solution.

Figure 3.3(c) shows the comparison of the density evolution at the stagnation point
of the aerofoil. It is observed that the difference between the single- and two-step
schemes is negligibly small. Further tests on these schemes are carried out at a
higher inlet Mach number of 1.2 with the flow being supersonic, and a different

mesh with a higher number of nodes (3753) and elements (7351). Here all the variables
at the inlet are specified and the exit is free. As we can see from Fig. 3.3(d) and (e), the

1.250

1.000 b .‘.‘.T-’-'-‘-'-‘/':T
> :
2 0.750 |- :
jo)
o

T-G scheme (Cs = 0.0)
0.500 | e T—G scheme (CS - 05)
Present schemes (Cs = 0.0)

250 | | | |
-50.00 —40.00 -30.00 —20.00 -10.00 0
Distance X

(c) M=0.5 (d)

Fig. 3.4 Subsonic inviscid flow past a NACA0012 aerofoil with o = 0 and M = 0.5: (a) Density contours
with TG scheme with no additional viscosity; (b) Density contours with TG scheme with additional viscosity;

(c) Density contours with CBS scheme with no additional viscosity; (d) Comparison of density along the
stagnation line.
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single-step scheme gives spurious oscillations in density values at the stagnation point.
Therefore we conclude that here the two-step algorithm is valid for any range of Mach
number and the single-step algorithm is limited to low Mach number flows with small
compressibility.

In Fig. 3.4 we compare the two-step algorithm results of the subsonic inviscid
(M = 0.5) results with those obtained by the Taylor—Galerkin scheme for the same
mesh. It is observed that the CBS algorithm gives a smooth solution near the
stagnation point even though no additional artificial diffusion in any form is
introduced. However the Taylor—Galerkin scheme gives spurious solutions and a
reasonable solution is obtained from this scheme only with a considerable amount
of additional diffusion. Comparison of pressure distribution along the stagnation
line shows (Fig. 3.4d) that the Taylor—Galerkin scheme gives an incorrect solution
even with additional diffusion. However, the CBS algorithm again gives an accurate
solution without the use of any additional artificial diffusion.

3.8 Concluding remarks

The general CBS algorithm is discussed in detail in this chapter for the equations of
fluid dynamics in their conservation form. Comparison between the single- and two-
step algorithms in the last section shows that the latter scheme is valid for all ranges of
flow. In later chapters, we generally apply the two-step algorithm for different flow
applications. Another important conclusion made from this chapter is about the
accuracy of the present scheme. As observed in the last section, the present CBS
algorithm gives excellent performance when the flow is slightly compressible com-
pared to the Taylor—Galerkin algorithm. In the following chapters we show further
tests on the algorithm for a variety of problems including general compressible and
incompressible flow problems, shallow-water problems, etc.
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Incompressible laminar flow —
newtonian and non-newtonian fluids

4.1 Introduction and the basic equations

The problems of incompressible flows dominate a large part of the fluid mechanics
scene. For this reason, they are given special attention in this book and we devote
two chapters to this subject. In the present chapter we deal with various steady-
state and transient situations in which the flow is forced by appropriate pressure
gradients and boundary forces. In the next chapter we shall consider free surface
flows in which gravity establishes appropriate wave patterns as well as the so-called
buoyancy force in which the only driving forces are density changes caused by
temperature variations. At this stage we shall also discuss briefly the important
subject of turbulence.

We have already mentioned in Volume 1 the difficulties that are encountered
generally with incompressibility when this is present in the equations of solid
mechanics. We shall find that exactly the same problems arise again in fluids
especially with very slow flows where the acceleration can be neglected and
viscosity is dominant (so-called Stokes flow). Complete identity with solids is found
here (namely Chapter 12, Volume 1).

The essential difference in the governing equations for incompressible flows from
those of compressible flows is that the coupling between the equations of energy
and the other equations is very weak and thus frequently the energy equations can
be considered either completely independently or as an iterative step in solving the
incompressible flow equations.

To proceed further we return to the original equations of fluid dynamics which
have been given in Chapters 1 and 3; we repeat these below for problems of small
compressibility.

Conservation of mass
9p _19p_ 90U
o 2ot 0Ox;
and ¢ = K/p where K is the bulk modulus. Here in the incompressible limit, the

density p is assumed to be constant and in this situation the term on the left-hand
side is simply zero.

(4.1)
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Conservation of momentum

ou; 0 or;  Op

=——(u;U; — — pg; 4.2
In the above we define the mass flow fluxes as
Ui = pu; (4.3)
Conservation of energy is now uncoupled and can be solved independently:
O(pE) 0 0 oT 0 0
=——(upE) +— | k— | —=—(y; —(T;u; 4.4
al 8X/ (ujp ) +8x,- axi ax/ (ujp) +8Xl‘ (leuj) ( )

In the above u; are the velocity components; E is the specific energy (c,T), p is the
pressure, T is the absolute temperature, pg; represents the body force and other
source terms, and 7;; are the deviatoric stress components given by (Eq. 1.12b).

Ou;  Ou; 2 Ouy,
= e S 3 45
Tij 'u((?x_,- + ox;, 37V 8xk> (45)

With the substitution made for density changes we note that the essential variables
in the first two equations become those of pressure and velocity. In exactly the same
way as these, we can specify the variables linking displacements and pressure in the
case of incompressible solids. It is thus possible to solve these equations in one of
many ways described in Chapter 12 of Volume 1 though, of course, the use of the
CBS algorithm is obvious.

Unless the viscosity and in fact the bulk modulus have a strong dependence on
temperature the problem is very weakly linked with the energy equation which can
be solved independently.

The energy equation for incompressible materials is best written in terms of the abso-
lute temperature 7" avoiding the specific energy. The equation now becomes simply

oT oT 0 oT 0 0
Cyp {Bt +u; 3‘6,} ~ox (k 8x,~> + ax, (Tij1;) — 876, (u;p) (4.6)

and we note that this is now a scalar convection—diffusion equation of the type we
have already encountered in Chapter 2, written in terms of the variable temperature
as the unknown. In the above equation, the last two work dissipation terms are
often neglected for fully incompressible flows. Note that the above equation is
derived assuming the density and ¢, (specific heat at constant volume) to be
constants.

In this chapter we shall in general deal with problems for which the coupling is
weak and the temperature equations do not present any difficulties. However in
Chapter 5 we shall deal with buoyancy effects causing atmospheric or general circula-
tion induced by small density changes induced by temperature differences.

If viscosity is a function of temperature, it is very often best to proceed simply by
iterating over a cycle in which the velocity and pressure are solved with the assump-
tion of known viscosity and that is followed by the solution of temperature. Many
practical problems have been so solved very satisfactorily. We shall show some of
these applications in the field of material forming later on in this chapter.
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In the main part of this chapter we shall consider the solution of viscous, newtonian
or non-newtonian fluids and we shall in the main use the CBS algorithm described in
Chapter 3, though on occasion we shall depart from this due to the similarity with the
equations of solid mechanics and use a more direct approach either by satisfying the
BB stability conditions of Chapter 12 in Volume 1 for the velocity and pressure
variables, or by using reduced integration in the context of a pure velocity formula-
tion with a penalty parameter.

However, before proceeding further, it is of interest to note that the very special
case of zero viscosity can be solved in a very much simpler manner and in the
next section we shall do so. Here we introduce the idea of potential flow with
irrotational constraints and with such a formulation the convective acceleration
disappears and the final equations become self-adjoint. For such problems the
Galerkin approximation can be used directly. We have already discussed this in
Chapter 7 of Volume 1.

4.2 Inviscid, incompressible flow (potential flow)

In the absence of viscosity and compressibility equations, Eqs (4.1) and (4.2) can be
written as

81/{,'

o, =0 (4.7
and
1) 4 — o — 4.
% + o, (uu;) + o, gi=0 (4.8)

These Euler equations are not convenient for numerical solution, and it is of
interest to introduce a potential, ¢, defining velocities as

_9¢ __9% _9¢
8x1 “2 = 8X2 U= 8)(?3

(4.9)

u =

or

99

u=-Vo¢ or U = — ax,

If such a potential exists then insertion of (4.9) into (4.7) gives a single governing
equation

¢
axiﬁxi
which, with appropriate boundary conditions, can be readily solved in the manner

described in Chapter 7 of Volume 1. For contained flow we can of course impose
the normal velocity u, on the boundaries:

=V=0 (4.10)

__o¢

= 4.11
== (411)
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and, as we know from the discussions in Volume 1, this provides a natural boundary
condition.

Indeed, at this stage it is not necessary to discuss the application of finite elements
to this particular equation, which was considered at length in Volume 1 and for which
many solutions are available.! In Fig. 4.1 an example of a typical potential solution is
given.

Of course we must be assured that the potential function ¢ exists, and indeed
determine what conditions are necessary for its existence. Here we observe that so
far we have not used in the definition of the problem the important momentum-
conservation equations (4.8), to which we shall now return. However, we first note
that a single-valued potential function implies that

o e
= 4.12
Bx, 5x,» 8x,~ 8)(/ ( )
and hence that, using the definition (4.9),
_ Oup Ouy _ Ouy  Ouy _ Ouz Oup
wr = 8x2 8x1 =0 “r= 8X3 8X2 =0 ws = 8x1 8)(?3 =0 (413)

This is a statement of the irrotationality of the flow which we see is implied by the
existence of the potential.

Inserting the definition of potential into the first term of Eq. (4.8) and using Eqs
(4.7) and (4.13) we can rewrite this equation as

8 (06N 9l » B

in which P is the potential of the body forces giving these as
opP

= 4.15
&= "o (4.15)
This is alternatively written as
0
V(—;—#H—&—P):O (4.16)

where H is the enthalpy, given as H = %u,-u,» +p/p.
If isothermal conditions pertain, the specific energy is constant and the above
implies that

1
—%Jriuiuﬂr%JrP:constant (4.17)

for the whole domain. This can be taken as a corollary of the existence of the potential
and indeed is a condition for its existence. In steady-state flows it provides the well-
known Bernoulli equation that allows the pressures to be determined throughout
the whole potential field when the value of the constant is established.
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Fig. 4.1 Potential flow solution around an aerofoil. Mesh and streamline plots.
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Moving
grid

Fig. 4.2 Free surface potential flow, illustrating an axisymmetric jet impinging on a hemispherical thrust
reverser (from Sarpkaya and Hiriart®).

Some problems of specific interest are those of flow with a free surface.”™* Here
the governing Laplace equation for the potential remains identical, but the free
surface position has to be found iteratively. In Fig. 4.2 an example of such a free
surface flow solution is given.’

In problems involving gravity the body force potential is simply

P =gx;

representing gravity forces, and the free surface condition requires that (in two
dimensions)

30t +u3) —gx3 =0

Such conditions involve an iterative, non-linear solution, as illustrated by examples of
overflows in reference 2.

It is interesting to observe that the governing potential equation is self-adjoint and
that the introduction of the potential has side-stepped the difficulties of dealing with
convective terms.
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4.3 Use of the CBS algorithm for incompressible or nearly
incompressible flows

4.3.1 The semi-implicit form

For problems of incompressibility with K being equal to infinity or indeed when K is
very large, we have no choice of using the fully explicit procedure and we must there-
fore proceed with the CBS algorithm in its semi-implicit form (Chapter 3, Sec. 3.3.2).
This of course will use an explicit solution for the momentum equation followed by an
implicit solution of the pressure laplacian form (the Poisson equation).

The solution which has to be obtained implicitly involves only the pressure variable
and we will further notice that, from the contents of Chapter 3, at each step the basic
equation remains unchanged and therefore the solution can be repeated simply with
different right-hand side vectors.

The convergence rate of course depends on the time step used and here we have the
time step limitation given by the Courant number

h
All < Alcrit — m (418)
for inviscid problems and for viscous problems
2
Atz < Atcri[ = E (419)

is an additional limitation. Here we note immediately that the viscosity lowers the
limit quite substantially and therefore convergence may not be exceedingly rapid.
The examples which we shall show nevertheless indicate its good performance and
on each of the figures we give the number of iterations used to arrive at final
solutions.

The classical problem on which we would like to judge the performance is that of
the closed cavity driven by the motion of a lid.>~’ There are various ways of assuming
the boundary conditions but the most common is one in which the velocity along the
top surface increases from the corner node to the driven value in the length of one
element (so-called ramp conditions).

The solution was obtained for different values of Reynolds number thus testing the
performance of the viscous formulation.

The problem has been studied by many investigators and probably the most
detailed investigation was that of Ghia et al.,’ in which they quote many solutions
and data for different Reynolds numbers. We shall use those results for comparison.

In the first figure, Fig. 4.3, we show the geometry, boundary conditions and finite
element mesh. The mesh is somewhat graded near the walls using a geometrical
progression.

1 Some investigators use the leaking lid formulation in which the velocity along the top surface is constant
and varies to zero within an element in the sides. It is preferable however to use the formulation where
velocity is zero on all nodes of the vertical sides.
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Fig. 4.3 Lid-driven cavity. Geometry, boundary conditions and mesh.

The velocity distribution along the centre-line for four different Reynolds numbers
ranging from 0 when we have pure Stokes flow to the Reynolds number of 5000 is
shown in Fig. 4.4. Similarly, the pressure distribution along the central horizontal
line is given in Fig. 4.5 for different Reynolds numbers.

In Fig. 4.6 we show the contours of pressure and stream function again for the same
Reynolds numbers.

In Fig. 4.7 we compare the pressure distribution at the mid-height of the cavity for
different meshes at Reynolds number equal to zero (Stokes flow).

The reader will observe how closely the results obtained by the CBS algorithm
follow those of Ghia et al.” calculated using finite differences on a much finer mesh
(121 x 121).

4.3.2 Quasi-implicit solution

We have already remarked in Chapter 3 that the reduction of the explicit time step
due to viscosity can be very inconvenient and may require a larger number of
iterations as shown in previous figures. The example of the cavity is precisely in
that category and at higher Reynolds numbers the reader will certainly note a very
large number of iterations which have to be performed before results become
reasonably steady. Here the time step is governed only by the relation given in
Eq. (4.18). We have rerun the problems with a Reynolds number of 5000 using the
quasi-implicit solution® which is explicit as far as the convective terms are concerned.
The solution obtained is shown in Fig. 4.8. The reader will observe that only a much
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Fig. 4.4 Lid-driven cavity. uq: velocity distribution along vertical centre-line for different Reynolds numbers
(semi-implicit form).

smaller number of iterations is required to reach steady state and gives an accurate
solution even at the higher Reynolds numbers. Here a solution for a Reynolds
number of 10000 is given in Fig. 4.9.

4.3.3 Fully explicit mode and artificial compressibility

It is of course impossible to model fully incompressible problems explicitly as the
length of the stable time step is simply zero. However, the reader will observe that
for steady-state solutions the first term of the continuity equation, i.e.

1 op
e ot
does not enter the steady-state calculations and we could thus use any reasonably
large value of ¢* instead of infinity. This artifice has been used with some success

and the solution for a cavity is reported in reference 9 so we do not repeat the results
here.

(4.20)
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Fig. 4.5 Lid-driven cavity. Pressure distribution along horizontal mid-plane for different Reynolds numbers
(semi-implicit form).

As we have mentioned in Chapter 3, it is important when using explicit pro-
cedures to make sure that the damping introduced is sufficient for ensuring that
an oscillation-free solution can be obtained. With the explicit algorithm the time
steps will inevitably be small as they are governed by the compressible wave velocity.
It is convenient here, and indeed sometimes essential, to introduce the internal Az,
which is different from the external At.,. This matter is discussed by Nithiarasu
et al. in reference 10 where several examples are shown proving the effectiveness
of this process.

4.4 Boundary-exit conditions

The exit boundary conditions described in the previous chapter (Chapter 3, Sec. 3.6)
are tested here for flow past a backward facing step. The geometry and boundary
conditions are shown in Fig. 4.10(a). Figures 4.10 and 4.11 show the results obtained
using the exit boundary conditions discussed in Chapter 3. For the sake of
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Fig. 4.7 Pressure distribution at mid-horizontal plane for Stokes flow in a cavity for different meshes (semi-
implicit form) and different boundary conditions.

comparison, the results predicted by taking a longer domain downstream are also
presented. As shown, the results predicted using the boundary conditions explained
in Chapter 3, Sec. 3.6 are very accurate.

4.5 Adaptive mesh refinement

We have discussed the matter of adaptive refinement in Chapters 14 and 15 of
Volume 1 in some detail. In that volume we have generally strived to obtain the
energy norm error to be equal within all elements. The same procedures concerning
the energy norm error can be extended of course to viscous flow especially when
this is relatively slow and the problem is nearly elliptic. However, the energy norm
has little significance at high speeds and here we revert to other considerations
which simply give an error indicator rather than an error estimator. Two procedures
are available and will be used in this chapter as well as a later one dealing with
compressible flows. References 11-69 list some of the earlier and latest contributions
to the field of adaptive procedures in fluid mechanics.

4.5.1 Second gradient (curvature) based refinement

Here the meaning of error analysis is somewhat different from that of the energy norm
and we follow an approach where the error value is constant in each element. In what
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Fig. 4.8 Lid-driven cavity. Quasi-implicit solution for a Reynolds number of 5000.

follows we shall consider first-order (linear) elements and the so-called / refinement
process in which increased accuracy is achieved by variation of element size. The p
refinement in which the order of the element polynomial expression is changed is of
course possible. Many studies are available on /4p refinements where both /4 and p
refinements are carried out simultaneously. This has been widely studied by Oden
et al?***352 but we believe that such refinements impose many limitations on
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Fig. 4.9 Lid-driven cavity. Quasi-implicit solution for a Reynolds number of 10 000.

mesh generation and solution procedures and as most fluid mechanics problems
involve an explicit time marching algorithm, the higher-order elements are not
popular.

The determination of error indicators in linear elements is achieved by considera-
tion of the so-called interpolation error. Thus if we take a one-dimensional element of
length / and a scalar function ¢, it is clear that the error in ¢ is of order O(h?) and that
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Fig. 4.10 Flow past a backward facing step. Exercise on exit boundary conditions, Re = 100.

it can be written as (see reference 22 for details)

d2 Q/)h

&

ch?

h 2
¢=¢-¢ =ch dx2 7 da?

(4.21)
where qSh is the finite element solution and ¢ is a constant.

If, for instance, we further assume that ¢ = qSh at the nodes, i.e. that the nodal error
is zero, then e represents the values on a parabola with a curvature of d’¢" / dx?. This
allows ¢, the unknown constant, to be determined, giving for instance the maximum

(a) Streamlines

il 1| |

(b) Pressure contours

Fig. 4.11 Flow past a backward facing step. Solution with a longer domain, Re = 100.
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Fig. 4.12 Interpolation error in a one-dimensional problem with linear shape functions.

interpolation error as (see Fig. 4.12)

1 2 h
€max = ghz cil;:)z (422)

or an RMS departure error as

eRMS = mh 02 (4.23)

In deducing the expressions (4.22) and (4.23), we have assumed that the nodal

values of the function ¢ are exact. As we have shown in Volume 1 this is true only

for some types of interpolating functions and equations. However the nodal values

are always more accurate than those noted elsewhere and it would be sensible even

in one-dimensional problems to strive for equal distribution of such errors. This
would mean that we would now seek an element subdivision in which

5 d2¢ll _
dx?
To appreciate the value of the arbitrary constant C occurring in expression (4.24)

we can interpret this as giving a permissible value of the limiting interpolation error
and simply insisting that

h C (4.24)

2
hz% <e, (4.25)
where ¢, = C is the user-specified error limit.

If we consider the shape functions of ¢ to be linear then of course second derivatives
are difficult quantities to determine. These are clearly zero inside every element and infi-
nity at the element nodes in the one-dimensional case or element interfaces in two or
three dimensions. Some averaging process has therefore to be used to determine the
curvatures from nodally computed values. Before discussing, however, such procedures
used for this, we must note the situation which will occur in two or three dimensions.
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The extension to two or three dimensions is of course necessary for practical
engineering problems. In two and three dimensions the second derivatives (or curva-
tures) are tensor valued and given as

o)

e — 2

and such definitions require the determination of the principal values and directions.
These principal directions are necessary for element elongation which is explained in
the following section.

The determination of the curvatures (or second derivatives) of #" needs of course
some elaboration. With linear elements (e.g. simple triangles or tetrahedra) the
curvatures of q&h which are interpolated as

¢" =N (4.27)

are zero within the elements and become infinity at element boundaries. There are two
convenient methods available for the determination of curvatures of the approximate
solution which are accurate and effective. Both of these follow some of the matter
discussed in Chapter 14 of Volume 1 and are concerned with recovery. We shall
describe them separately.

Local patch interpolation. Superconvergent values

In the first method we simply assume that the values of the function such as pressure
or velocity converge at a rate which is one order higher at nodes than that achieved at
other points of the element. If indeed such values are more accurate it is natural that
they should be used for interpreting the curvatures and the gradients. Here the
simplest way is to assume that a second-order polynomial is used to interpolate the
nodal values in an element patch which uses linear elements. Such a polynomial
can be applied in a least square manner to fit the values at all nodal points occurring
within a patch which assembles the approximation at a particular node. For triangles
this rule requires at least five elements that are assembled in a patch but this is a
matter easily achieved. The procedure of determining such least squares is given
fully in Chapter 14 of Volume 1 and will not be discussed here. However once a
polynomial distribution of say ¢ is available then immediately the second derivatives
of that function can be calculated at any point, the most convenient one being of
course the point referring to the node which we require.

On occasion, as we shall see in other processes of refinement, it is not the curvature
which is required but the gradient of the function. Again the maximum value of the
gradient, for instance of ¢, can easily be determined in any point of the patch and in
particular at the nodes.

Second method
In this method we assume that the second derivative is interpolated in exactly the
same way as the main function and write the approximation as

Po \ _of P\
(ax,.axj> _N(ax,.axj> (4.28)
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This approximation is made to be a least square approximation to the actual

distribution of curvatures, i.e.
W 82¢11

N'IN - 0 = 4.2
Lz (ax,-axj> 9x;0x; 0 (4.29)

and integrating by parts to give

¢ \* . r 0" [ [ ONT 6N -
(ax,-ax.,-) -M < LN axiax)dg__M < L axia)cjdsz)Qs (430)

where M is the mass matrix given by

M = J N'NdQ (4.31)
Q

which of course can be ‘lumped’.

4.5.2 Element elongation

Elongated elements are frequently introduced to deal with ‘one-dimensional’
phenomena such as shocks, boundary layers, etc. The first paper dealing with such
elongation was presented as early as 1987 by Peraire et al.* and later by many authors
for fluid mechanics and other problems.”®~”* But the possible elongation was limited
by practical considerations if a general mesh of triangles was to be used. An
alternative to this is to introduce a locally structured mesh in shocks and boundary
layers which connects to the completely unstructured triangles. This idea has been
extensively used by Hassan et al.?*>33% Zienkiewicz and Wu>® and Marchant
et al.®® in the compressible flow context. In both procedures it is necessary to establish
the desired elongation of elements. Obviously in completely parallel flow phenomena
no limit on elongation exists but in a general field the elongation ratio defining the
maximum to minimum size of the element can be derived by considering curvatures.
Thus the local error is proportional to the curvature and making /4° times the
curvature equal to a constant, we immediately derive the ratio /i,y //imin-

In Fig. 4.13, X and X, are the directions of the minimum and maximum principal
values of the curvatures. Thus for an equal distribution of the interpolation error we
can write for each nodef

> ¢
il == | = Bl == | = C 4.32
min aXzz 1max 8X12 ( )
which gives us the stretching ratio s as
s = Fima = (4.33)
hmin

1 Principal curvatures and directions can be found in a manner analogous to that of the determination of
principal stresses and their directions. Procedures are described in standard engineering texts.
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Fig. 4.13 Element elongation 4 and minimum and maximum element sizes.

With the relations given above, we can formulate the following steps to adaptively
refine a mesh:

1. Find the solution using an initial coarse mesh.

2. Select a suitable representative scalar variable and calculate the local maximum
and minimum curvatures and directions of these at all nodes.

3. Calculate the new element sizes at all nodes from the maximum and minimum
curvatures using the relation in Eq. (4.32).

4. Calculate the stretching ratio from the ratio of the calculated maximum to minimum
element sizes (Eq. 4.33). If this is very high, limit it by a maximum allowable value.

5. Remesh the whole domain based on the new element size, stretching ratios and the
direction of stretching.

To use the above procedure, an efficient unstructured mesh generator is essential.
We normally use the advancing front technique operating on the background mesh
principle” in most of the examples presented here.t The information from the
previous solution in the form of local mesh sizes, stretching ratio and stretching
direction are stored in the previous mesh and this mesh is used as a background
mesh for the new mesh.

In the above steps of anisotropic mesh generation, to avoid very small and large
elements (especially in compressible flows), the minimum and maximum allowable
sizes of the elements are given as inputs. The maximum allowable stretching ratio
is also supplied to the code to avoid bad elements in the vicinity of discontinuities.
It is generally useful to know the minimum size of element used in a mesh as many
flow solvers are conditionally stable. In such solvers the time step limitation depends
very much on the element size.

The procedure just described for an elongated element can of course be applied for
the generation of isotropic meshes simply by taking the maximum curvature at every
point.

The matter to which we have not yet referred is that of suitably choosing the vari-
able ¢ to which we will wish to assign the error. We shall come back to this matter
later but it is clear that this has to be a well-representative quantity available from
the choice of velocities, pressures, temperature, etc.

t Another successful unstructured mesh generator is based on Delaunay triangulation. The reader can
obtain more information by consulting references 54, 59—62, 65-67, 74—85.

109



110

Incompressible laminar flow

4.5.3 First derivative (gradient) based refinement

The nature of the fluid flow problems is elliptic in the vicinity of the boundaries often
forming so-called viscous boundary layers though some distance from the boundaries
the equations become almost hyperbolic. For such hyperbolic problems it is possible
to express the propagation type error in terms of the gradient of the solution in the
domain. In such cases the error can be considered as

¢
o = C (4.34)
where 7 is the direction of maximum gradient and / is the element size (minimum size)
in the same direction. The above expression can be used to determine the minimum
element size at all nodes or other points of consideration in exactly the same
manner as was done when using the curvature. However the question of stretching
is less clear. At every point a maximum element size should be determined. One
way of doing this is of course to return to the curvatures and find the curvature
ratios. Another procedure to determine the maximum size of element is described
by Zienkiewicz and Wu.> In this the curvature of the streamlines is considered and
hmax 18 calculated as

nax < OR (4.35)

where R is the radius of curvature of the streamline and ¢ is a constant that varies
between 0 and 1. Immediately the ratio between the maximum and minimum element
size gives the stretching ratio.

4.5.4 Choice of variables

In both methods of mesh refinement, i.c. those following curvatures and those
following gradients, a particular scalar variable needs to be chosen to define the
mesh. The question of the suitable choice of the variable is an outstanding one and
many authoritative procedures have been proposed. The simplest procedure is to
consider only one of the many variables and here the one which is efficient is
simply the absolute value of the velocity vector, i.e |u|. Such a velocity is convenient
both for problems of incompressible flow and, as we shall see later, for problems of
compressible flow where local refinement is even more important than here. (Very
often in compressible flows the Mach number, which in a sense measures the same
quantity, has been used.)

Of course other variables can be chosen or any combination of variables such as
velocities, pressures, temperatures, etc., can be used. Certainly in this chapter the
absolute velocity is the most reasonable criterion. Some authors have considered
using each of the problem variables to generate a new mesh.” %% However this
is rather expensive and we believe velocity alone can give accurate results in most
cases.
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Adapled mesh Streamlines Pressure contours
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Fig. 4.14 Lid-driven cavity, Re = 5000. Adapted meshes using curvature and gradient based refinements and
solutions.
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4.5.5 Some examples

Here we show some examples of incompressible flow problems solved using the above-
mentioned adaptive mesh generation procedures. In the first problem of driven flow in a
cavity which we have previously examined is again used. We use an initial uniform
mesh with 481 nodes and 880 elements. Final meshes and solutions obtained by both
curvature and gradient based procedures are shown in Fig. 4.14. In general the curva-
ture based procedure gives a wide band of refined elements along the circulation path
(Fig. 4.14a). However, the number of refined elements along the circulation path is
smaller when the gradient based refinement is used (Fig. 4.14b). Both the meshes
give excellent comparison with the benchmark solution of Ghia et al.® (Fig. 4.14c).

(b) Streamlines

Atz 8

(c) Pressure contours

| Curvature based refinement

(b) Streamlines

eyl ? |

(c) Pressure contours

Il Gradient based refinement

Fig. 4.15 Flow past a backward facing step, Re = 229. Adapted meshes using curvature and gradient based
refinements and solutions.
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A similar exercise has been carried out for the flow over a backward facing step
which was also considered previously. Figure 4.15 shows the initial mesh and final
meshes obtained from curvature and gradient based procedures. As we can see, a
more meaningful mesh is obtained using the gradient based procedure in this case.

In the adaptive solutions shown here we have not used any absolute value of the
desired error norm as the definition of a suitable norm presents certain difficulties,
though of course the use of energy norm in the manner suggested in Volume 1
could be adopted. We shall use such an error requirement in some later problems.

4.6 Adaptive mesh generation for transient problems

In the preceding sections we have indicated various adaptive methods using complete
mesh regeneration with error indicators of the interpolation kind. Obviously other
methods of mesh refinement can be used (mesh enrichment or r refinement) and
other procedures of error estimating can be employed if the problem is nearly elliptic.
One such study in which the energy norm is quite effectively used is reported by Wu
et al.®® In that study the full transient behaviour of the Von Karman vortex street
behind a cylinder is considered and the results are presented in Fig. 4.16.

In this problem, the mesh is regenerated at fixed time intervals using the energy
norm error and the methodologies largely described in Chapter 15 of Volume 1.

Simii?gzprocedures have been used by others and the reader can refer to these
works.”"

4.7 Importance of stabilizing convective terms

We present here the effects of stabilizing terms introduced by the CBS algorithm at
low and high Reynolds number flows. These terms are essential in compressible
flow computations to suppress the oscillations. However, their effects are not clear
in incompressible flow problems. To demonstrate the influence of stabilizing terms,
the driven flow in a cavity is considered again for two different Reynold’s numbers,
100 and 5000, respectively. Figure 4.17 shows the results obtained for these Reynolds
numbers. The reader will notice only slight effects of stabilization terms at Re = 100.
However, at Re = 5000, some oscillations in pressure in the absence of stabilization
terms are noticed. These oscillations vanish in the presence of stabilization terms
[namely terms proportional to Az in the momentum equations (3.23) and (3.24)].
In many problems of higher Reynold’s number or compressibility the importance
of stabilizing convective terms is more dramatic.

4.8 Slow flows — mixed and penalty formulations

4.8.1 Analogy with incompressible elasticity

Slow, viscous incompressible flow represents the extreme situation at the other end of
the scale from the inviscid problem of Sec. 4.2. Here all dynamic (acceleration) forces

113
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Fig. 4.16 Transient incompressible flow around a cylinder at Re = 250. Adaptively refined mesh. Pressure contours and streamlines at various times after initiation of

‘vortex shedding’.
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With stabilization Without stabilization

Without stabilization

-~

(b) Re = 5000

Fig. 4.17 Effects of characteristic stabilizing terms in a driven cavity problem at different Reynold’s numbers.

are, a priori, neglected and Eqs (4.1) and (4.2) reduce, in tensorial form, to
=¢,=0 (4.36)
and

TP g0 (437)

The above are completed of course by the constitutive relation

= u(‘a”" Loy 2 6“") (4.38)

= oy, F a3 o,

j
which is identical to the problem of incompressible elasticity in which we replace:

(a) the displacements by velocities,
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(b) the shear modulus G by the viscosity p and
(c) the mean stress by negative pressure.

We have discussed such equations in Chapters 1 and 3.

4.8.2 Mixed and penalty discretization

The discretization can be started from the mixed form with independent approxima-
tions of u and p, i.e.

u=Nji p=N,p (4.39)

or by a penalty form in which Eq. (4.36) is augmented by p/y where ~ is a large
penalty parameter

p
5 0 (4.40)
allowing p to be climinated from the computation. Such penalty forms are only
applicable with reduced integration and their general equivalence with the mixed
form in which p is discretized by a discontinuous choice of N, between elements
has been demonstrated.® (See Chapter 12, Volume 1 for details.)

As computationally it is advantageous to use the mixed form and introduce the
penalty parameter only to eliminate the p values at the element levels, we shall
presume such penalization to be done after the mixed discretization.

The use of penalty forms in fluid mechanics was introduced early in the 1970s
and is fully discussed elsewhere.”’ 2

The discretized equations will always be of the form

{—ET —/;(I}MHE} - {5} (4.41)

where / is a typical element size, I an identity matrix,

m'Su +

87—-89

K= ) B'uI,BdQ  where B = SN,

G=| (VN,)'N,dQ (4.42)
Q

f=| Nlpgdo + J Nltdr

Q r,
and the penalty number, ~, is introduced purely as a numerical convenience. This is
taken generally as”*®?

7= (107-10%)u

There is little more to be said about the solution procedures for creeping incom-
pressible flow with constant viscosity. The range of applicability is of course limited
to low velocities of flow or high viscosity fluids such as oil, blood in biomechanics
applications, etc. It is, however, important to recall here that the mixed form
allows only certain combinations of N, and N, interpolations to be used without
violating the convergence conditions. This is discussed in detail in Chapter 12 of
Volume 1, but for completeness Fig. 4.18 lists some of the available elements together
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0O (h) (T3B1/3C)
0 (h?) (T6/3C)

0 (h?) (Q9/4C)

0 (h?) (T6 B1/3D)*
o (h) (Q4/1D)*

0 (h?) (Q9/4D)*

0 (h?) (Q9/3D)

0 (h) (T6/1D)

(b) Discontinuous p interpolation

O Velocity node

Vv Pressure node

* Denotes elements failing
Babuska—Brezzi test but
still performing reasonably

Fig. 4.18 Some useful velocity—pressure interpolations and their asymptotic, energy norm convergence
rates.
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with their asymptotic convergence rates.”> Many other elements useful in fluid
mechanics are documented elsewhere,”* " but those of proven performance are
given in the table.

It is of general interest to note that frequently elements with C;, continuous pressure
interpolations are used in fluid mechanics and indeed that their performance is
generally superior to those with discontinuous pressure interpolation on a given
mesh, even though the cost of solution is marginally greater.

It is important to note that the recommendations concerning the element types for
the Stokes problem carry over unchanged to situations in which dynamic terms are of
importance.

The fairly obvious extension of the use of incompressible elastic codes to Stokes
flow is undoubtedly the reason why the first finite element solutions of fluid mechanics
were applied in this area.

4.9 Non-newtonian flows — metal and polymer forming
4.9.1 Non-newtonian flows including viscoplasticity and plasticity

In many fluids the viscosity, though isotropic, may be dependent on the rate of strain
¢;; as well as on the state variables such as temperature or total deformation. Typical
here is, for instance, the behaviour of many polymers, hot metals, etc., where an
exponential law of the type

po= oY (4.43)
with

to = po(T', €)
governs the viscosity—strain rate dependence where m is a physical constant. In the
above £ is the second invariant of the deviatoric strain rate tensor defined from Eq.
(3.34), T is the (absolute) temperature and ¢ is the total strain invariant.

This secant viscosity can of course be obtained by plotting the relation between the
deviatoric stresses and deviatoric strains or their invariants, as Eq. (3.33) simply
defines the viscosity by the appropriate ratio of the stress to strain rate. Such plots
are shown in Fig. 4.19 where & denotes the second deviatoric stress invariant. The
above exponential relation of Eq. (4.43) is known as the Oswald de Wahle law and
is illustrated in Fig. 4.19(b).

In a similar manner viscosity laws can be found for viscoplastic and indeed purely
plastic behaviour of an incompressible kind. For instance, in Fig. 4.19(c) we show a
viscoplastic Bingham fluid in which a threshold or yield value of the second stress
invariant has to be exceeded before any strain rate is observed. Thus for the visco-
plastic fluid illustrated it is evident that a highly non-linear viscosity relation is
obtained. This can be written as

@,—l—’yé
W=———=
€

(4.44)

where G, is the value of the second stress invariant at yield.
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Fig. 4.19 Stress &, viscosity 1 and strain rate & relationships for various materials.

The special case of pure plasticity follows of course as a limiting case with the
fluidity parameter v = 0, and now we have simply

n=2 (445)

€

<

Of course, once again 7, can be dependent on the szate of the fluid, i.e.

&, =6,(T,&) (4.46)

The solutions (at a given state of the fluid) can be obtained by various iterative
procedures, noting that Eq. (4.41) continues to be valid but now with the matrix K
being dependent on viscosity, i.e.

K = K() = K(é) = K(u) (4.47)

thus being dependent on the solution.
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The total iteration process can be used simply here (see Volume 2). Thus rewriting

Eq. (4.41) as
(-4

and noting that

A =A(u,p)
we can write
SNl -
f )
{ " } - A{ } A =A@, p) (4.49)
p 0

Starting with an arbitrary value of p we repeat the solution until convergence is
obtained.

Such an iterative process converges rapidly (even when, as in pure plasticity, u
can vary from zero to infinity), providing that the forcing f is due to prescribed
boundary velocities and thus immediately confines the variation of all velocities in a
narrow range. In such cases, five to seven iterations are generally required to bring
the difference of the ith and (i + 1)th solutions to within the 1 per cent (euclidian)
norm.

The first non-newtonian flow solutions were applied to polymers and to hot metals in
the early 1970s.”” " Application of the same procedures to the forming of metals was
introduced at the same time and has subsequently been widely developed.®*1%~1%7

It is perhaps difficult to visualize steel or aluminium behaving as a fluid, being
conditioned to use these materials as structural members. If, however, we note that
during the forming process the elastic strains are of the order of 107° while the plastic
strain can reach or exceed a value of unity, neglect of the former (which is implied in
the viscosity definition) seems justifiable. This is indeed borne out by comparison of
computations based on what we now call flow formulation with elastoplastic compu-
tation or experiment. The process has alternatively been introduced as a ‘rigid-plastic’
form, 03106 though such modelling is more complex and less descriptive.

Today the methodology is widely accepted for the solution of metal and polymer
forming processes, and only a limited selection of references of application can be
cited. The reader would do well to consult references 115, 128, 129 for a complete
survey of the field.

4.9.2 Steady-state problems of forming

Two categories of problems arise in forming situations. Steady-state flow is the first of
these. In this, a real, continuing, flow is modelled, as shown in Fig. 4.20(a) and here
velocity and other properties can be assumed to be fixed in a particular point of space.
In Fig. 4.20(b) the more usual transient processes of forming are illustrated and we
shall deal with these later. In a typical steady-state problem if the state parameters
T and € defining the temperature and viscosity are known in the whole field, the
solution can be carried out in the manner previously described. We could, for
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instance, assume that the ‘viscous’ flow of the problem of Fig. 4.21 is that of an ideally
plastic material under isothermal conditions modelling an extrusion process and
obtain the solution shown in Table 4.1. For such a material exact extrusion forces
can be calculated'® and the table shows the errors obtained with the flow formulation
using different triangular elements of Fig. 4.18 and two meshes.” The fine mesh here
was arrived at using error estimates and a single adaptive remeshing.

In general the problem of steady-state flow is accompanied by the evolution of
temperature (and other state parameters such as the total strain invariant ) and
here it is necessary to couple the solution with the heat balance and possibly other
evolution equations. The evolution of heat has already been discussed and the
appropriate conservation equations such as Eq. (4.6). It is convenient now to rewrite
this equation in a modified form.

Firstly, we note that the kinetic energy is generally negligible in the problems
considered and that with a constant specific heat ¢ per unit volume we can write

pE =~ pe = ¢T (4.50a)

where ¢ is the specific heat. Secondly, we observe that the internal work dissipation

Prescribed
g traction
_I_:__J__:_J_:_J._:_I)\/ /
I I I
._I_I__I__.r_l__I_I_'_J.UI_I_I_J__I___J__S
—I I__L__l_J__I_l_T_lII | | |
% Iv\ l l l I/\
Prescribed
velocity
Extrusion

Rolling
(a) Steady rate

Fig. 4.20 Forming processes typically used in manufacture.
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Fig. 4.21 Plane strain extrusion (extrusion ratio 2: 1) with ideal plasticity assumed.

can be rewritten by the identity
0 0 .
ax; (pu;) — (97)61 (Tjithi) = —0ji€j; (4.50D)
where, by Eq. (1.9),

Jl

Table 4.1 Comparisons of performance of several triangular mixed elements of Fig. 4.21 in a plane extru-
sion problem (ideal plasticity assumed)93

Mesh 1 (coarse) Mesh 2 (fine)

Element type Ext. force Force error % CPU(s) Ext. force Force error % CPU(s)

T6/1D 28901.0 12.02 67.81 25990.0 0.73 579.71
T6B1/3D 31043.0 20.32 75.76 26258.0 1.78 780.13
T6B1/3D" 29031.0 12.52 73.08 26229.0 1.66 613.92
To6/3C 27902.5 8.15 87.62 25975.0 0.67 855.38

Exact 25800.0 0.00 — 25800.0 0.00 —
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and, by Eq. (1.2),

81/[//8)(,‘ + 8u,/8x,
gji = — 3 '

(4.50d)

We note in passing that in general the effect of the pressure term in Eqs (4.50) is
negligible and can be omitted if desired.

Using the above and inserting the incompressibility relation we can write the energy
conservation as (for an alternative form see Eq. 4.6)

0T . 0T 0 oT .
(C’@[‘Fcui%) _87x,~ <k8x,> — (o€ + pgiu;) = 0 (4.51)

The solution of the coupled problem can be carried out iteratively. Here the term in
the last bracket can be evaluated repeatedly from the known velocities and stresses
from the flow solution. We note that the first bracketed term represents a total
derivative of the convective kind which, even in the steady state, requires the use of
the special weighting procedures discussed in Chapter 2.

Such coupled solutions were carried out for the first time as early as 1973 and later
in 1978,'%19 but are today practised routinel3/.109’110 Figure 4.22 shows a typical
thermally coupled solution for a steady-state rolling problem from reference 103.

It is of interest to note that in this problem boundary friction plays an important
role and that this is modelled by using thin elements near the boundary, making
the viscosity coefficient in that layer pressure dependent.!'® This procedure is very
simple and although not exact gives results of sufficient practical accuracy.

4.9.3 Transient problems with changing boundaries

These represent the second, probably larger, category of forming problems. Typical
examples here are those of forging, indentation, etc., and again thermal coupling
can be included if necessary. Figures 4.23 and 4.24 illustrate typical applications.

The solution for velocities and internal stresses can be readily accomplished at a
given configuration providing the temperatures and other state variables are known
at that instant. This allows the new configuration to be obtained both for the
boundaries and for the mesh by writing explicitly

AX,‘ = MIAZ (452)

as the incremental relation.

If thermal coupling is important increments of temperature need also to be
evaluated. However, we note that for convected coordinates Eq. (4.51) is simplified
as the convected terms disappear. We can now write

.or 0 < oT

- _ 87x,

¢ o1 o, ) — (04€ij + pgitt; +g4) = 0 (4.53)

where the last term is the heat input known at the start of the interval and computa-
tion of temperature increments is made using either explicit or implicit procedures
discussed in Chapter 3.
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Fig. 4.23 Punch indentation problem (penalty function approach).®® Updated mesh and surface profile with
24 isoparametric elements. Ideally plastic material; (a), (b), (c) and (d) show various depths of indentation
(reduced integration is used here).

Indeed, both the coordinate and thermal updating can make use iteratively of the
solution on the updated mesh to increase accuracy. However, it must be noted that
any continuous mesh updating will soon lead to unacceptable meshes and some
form of remeshing is necessary.

In the example of Fig. 4.23,% in which ideal plasticity was assumed together with
isothermal behaviour, it is necessary only to keep track of boundary movements. As
temperature and other state variables do not enter the problem the remeshing can be
done simply — in the case shown by keeping the same vertical lines for the mesh
position.

However, in the example of Fig. 4.24 showing a more realistic problem, when
a new mesh is created an interpolation of all the state parameters from the old to the
new mesh positions is necessary. In such problems it is worthwhile to strive to obtain
discretization errors within specified bounds and to remesh adaptively when these
errors are too large.

We have discussed the problem of adaptive remeshing for linear problems in
Chapter 15 of Volume 1. In the present examples similar methods have been adopted
with success'**!** and in Fig. 4.24 we show how remeshing proceeds during the

131,132
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Fig. 4.24 (continued) A transient extrusion problem with temperature and strain-dependent yield."*? Adap-
tive mesh refinements uses T6/1D elements of Fig. 4.18.

forming process. It is of interest simply to observe that here the energy norm of the
error is the measure used.

The details of various applications can be found in the extensive literature on the
subject. This also deals with various sophisticated mesh updating procedures. One
particularly successful method is the so-called ALE (arbitrary lagrangian—eulerian)
method.'**~"%° Here the original mesh is given some prescribed velocity v in a
manner fitting the moving boundaries, and the convective terms in the equations
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are retained with reference to this velocity. In Eq. (4.52), for instance, in place of

. oT it o 5) oT
CU; — we write c\u; — V) —
Iaxi ! ! 8)(1‘

etc., and the solution can proceed in a manner similar to that of steady state (with
convection disappearing of course when v; = u;; i.e. in the pure updating process).
It is of interest to observe that the flow methods can equally well be applied to the
forming of thin sections resembling shells. Here of course all the assumptions of shell
theory and corresponding finite element technology are applicable. Because of this,
incompressibility constraints are no longer a problem but other complications arise.
The literature of such applications is large, but much relevant information can be
found in references 140—153. Practical applications ranging from the forming of beer
cans to car bodies abound. Figures 4.25 and 4.26 illustrate some typical problems.
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(b) Mesh for establishing die geometry

Fig. 4.26 Finite element simulation of the superplastic forming of a thin sheet component by air pressure
application. This example considers the superplastic forming of a truncated ellipsoid with a spherical
indent. The original flat blank was 150 x 100 mm. The truncated ellipsoid is 20mm deep. The original
thickness was 1 mm. Minimum final thickness was 0.53 mm; 69 time steps were used with a total of 285
Newton—Raphson iterations (complete equation solutions). ™
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Fig. 4.26 Continued.

4.9.4 Elastic springback and viscoelastic fluids

In Sec. 4.9.1 we have argued that omission of elastic effects in problems of metal or
plastic forming can be justified because of the small amount of elastic straining.
This is undoubtedly true when we wish to consider the forces necessary to initiate
large deformations and to follow these through. There are however a number of
problems in which the inclusion of elasticity is important. One such problem is for
instance that of ‘spring-back’ occurring particularly in metal forming of complex
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shapes. Here it is important to determine the amount of elastic recovery which
may occur after removing the forming loads. Some possible suggestions for the
treatment of such effects have been presented in reference 116 as early as 1984.
However since that time much attention has been focused on the flow of viscoelastic
fluids which is relevant to the above problem as well to the problem of transportation
of fluids such as synthetic rubbers, etc. The procedures used in the study of such
problems are quite complex and belong to the subject of numerical rheology. In
this context the work of M. Crochet, K. Walters, P. Townsend and M.F.
Webster' 716 is notable. Obviously the subject is beyond the space limitations of
the present book but an essential treatment can be found from the ideas discussed
in this volume.

4.10 Direct displacement approach to transient metal
forming

Explicit dynamic codes using quadrilateral or hexahedral elements have achieved
considerable success in modelling short-duration impact phenomena with plastic
deformation. The prototypes of finite element codes of this type are DYNA2d and
DYNAZ3d developed at Lawrence Livermore National Laboratory.'®*1% For prob-
lems of relatively slow metal forming, such codes present some difficulties as in
general the time step is governed by the elastic compressibility of the metal and a
vast number of time steps would be necessary to cover a realistic metal forming prob-
lem. Nevertheless much use has been made of such codes in slow metal forming pro-
cesses by the simple expedient of increasing the density of the material by many orders
of magnitude. This is one of the drawbacks of using such codes whose description
rightly belongs to the matter discussed in Volume 2 of this book. However, a further
drawback is the lack of triangular or tetrahedral elements of a linear kind which could
compete with linear quadrilaterals or hexahedra currently used and permit an easier
introduction of adaptive refinement. It is well known that linear triangles or tetra-
hedra in a pure displacement (velocity) formulation will lock for incompressible or
nearly incompressible materials. However we have already found that the CBS
algorithm will avoid such locking when the same (linear) interpolation is used for
both velocities and pressure.'®®

It is therefore possible to proceed in each step by solving a simple Stokes problem to
evaluate the lagrangian velocity increment. We have described the use of such velocity
formulation in the previous chapter. The update of the displacement allows new
stresses to be evaluated by an appropriate plasticity law and the method can be
used without difficulty as shown by Zienkiewicz et al.'° In Fig. 4.27, we show a
comparison between various methods of solving the impact of a circular bar made
of an elastoplastic metal using an axisymmetric formulation. In this figure we show
the results of a linear triangle displacement (Fig. 4.27b) form with a single integrating
point for each element and a similar study again using displacement linear quadrilat-
erals (Fig. 4.27¢) also with a single integration point. This figure also shows the same
triangles and quadrilaterals solved using the CBS algorithm and very accurate final
results (Fig. 4.27d and e).
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Fig. 4.27 Axisymmetric solutions to the bar impact problem: (a) initial shape; (b) linear triangles — displace-
ment algorithm; (c) bilinear quadrilaterals — displacement algorithm; (d) linear triangles — CBS algorithm; (e)
bilinear quadrilaterals — CBS algorithm.

In Fig. 4.28 we show similar results obtained with a full three-dimensional analysis.
Similar methods for this problem have been presented by Bonet and Burton.'®’

4.11 Concluding remarks

The range of examples for which an incompressible formulation applies is very large
as we have shown in this chapter. Indeed many other examples could have been
included but for lack of space we proceed directly to Chapter 5 where the
incompressible formulation is used for problems in which free surface or buoyancy
occurs with gravity forces being the most important factor.
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Fig. 4.28 Three-dimensional solution: (a) tetrahedral elements — standard displacement algorithm; (b)
tetrahedral elements — CBS algorithm.
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Free surfaces, buoyancy and
turbulent incompressible flows

5.1 Introduction

In the previous chapter we have introduced the reader to general methods of solving
incompressible flow problems and have illustrated these with many examples of
newtonian and non-newtonian flows. In the present chapter, we shall address three
separate topics of incompressible flow which were not dealt with in the previous
chapters. This chapter is thus divided into three parts. In the first two parts the
common theme is that of the action of the body force due to gravity. We start with
a section addressed to problems of free surfaces and continue with the second section
which deals with buoyancy effects caused by temperature differences in various parts
of the domain. The third part discusses the important topic of turbulence and we shall
introduce the reader here to some general models currently used in such studies. This
last section will inevitably be brief and we will simply illustrate the possibility of
dealing with time averaged viscosities and Reynolds stresses. We shall have occasion
later to use such concepts when dealing with compressible flows in Chapter 6.
However the first two topics of incompressible flow are of considerable importance
and here we shall discuss matters in some detail.

The first part of this chapter, Sec. 5.2, will deal with problems in which a free
surface of flow occurs when gravity forces are acting throughout the domain. Typical
examples here would be for instance given by the disturbance of the free surface of
water and the creation of waves by moving ships or submarines. Of course other
problems of similar kinds arise in practice. Indeed in Chapter 7, where we deal
with shallow water flows, a free surface is an essential condition but other assump-
tions and simplifications have to be introduced. Here we deal with the full problem
and include either complete viscous effects or simply deal with an inviscid fluid
without further physical assumptions. There are other topics of free surfaces which
occur in practice. One of these for instance is that of mould filling which is frequently
encountered in manufacturing where a particular fluid or polymer is poured into a
mould and solidifies. We shall briefly refer to such examples. Space does not permit
us to deal with this important problem in detail but we give some references to the
current literature.

In Sec. 5.3, we invoke problems of buoyancy and here we can deal with pure
(natural) convection when the only force causing the flow is that of the difference
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between uniform density and density which has been perturbed by a given tempera-
ture field. In such examples it is a fairly simple matter to modify the equations so as to
deal only with the perturbation forces but on occasion forced convection is coupled
with such naturally occurring convection.

5.2 Free surface flows
5.2.1 General remarks and governing equations

In many problems of practical importance a free surface will occur in the fluid
(liquid). In general the position of such a free surface is not known and the main
problem is that of determining it. In Fig. 5.1, we show a set of typical problems of
free surfaces; these range from flow over and under water control structures, flow

Sluice gate Overflow

Water level

Free surface Free surface

Water
Water
Floor
(a) (b)
Free surface waves Ship Free surface
Sea
Sea floor
(c) (d)
Core < | Feeder
B
Free surface
Free surface
Mould cavity
Hydrofoil
Sea floor Metal inlet Die

(e) ®)
Fig. 5.1 Typical problems with a free surface.
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around ships, to industrial processes such as filling of moulds. All these situations deal
with a fluid which is incompressible and in which the viscous effects either can be
important or on the other hand may be neglected. The only difference from solving
the type of problem which we have discussed in the previous chapter is the fact
that the position of the free surface is not known a priori and has to be determined
during the computation.

On the free surface we have at all times to ensure that (1) the pressure (which
approximates the normal traction) and tangential tractions are zero unless specified
otherwise, and (2) that the material particles of the fluid belong to the free surface
at all times.

Obviously very considerable non-linearities occur and the problem will have to be
solved iteratively. We shall therefore concentrate in the following presentation on a
typical situation in which such iteration can be used. The problem chosen for the
more detailed discussion is that of ship hydrodynamics though the reader will
obviously realize that for the other problems shown somewhat similar procedures
of iteration will be applicable though details may well differ in each application.

5.2.2 Free surface wave problems in ship hydrodynamics

Figure 5.2 shows a typical problem of ship motion together with the boundaries
limiting the domain of analysis. In the interior of the domain we can use either the

X4

Fig. 5.2 A typical problem of ship motion.
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full Navier—Stokes equations or, neglecting viscosity effects, a pure potential or Euler
approximation. Both assumptions have been discussed in the previous chapter but it
is interesting to remark here that the resistance caused by the waves may be four or
five times greater than that due to viscous drag. Clearly surface effects are of great
importance.

Historically many solutions that ignore viscosity totally have been used in the ship
industry with good effect by involving so-called boundary solution procedures or
panel methods.'~!! Early finite element studies on the field of ship hydrodynamics
have also used potential flow equations.'”> A full description of these is given in
many papers. However complete solutions with viscous effects and full non-linearity
are difficult to deal with. In the procedures that we present in this section, the door is
opened to obtain a full solution without any extraneous assumptions and indeed such
solutions could include turbulence effects, etc. We need not mention in any detail the
question of the equations which are to be solved. These are simply those we have
already discussed in Sec. 4.1 of the previous chapter and indeed the same CBS
procedure will be used in the solution. However, considerable difficulties arise on
the free surface, despite the fact that on such a surface both tractions are known
(or zero). The difficulties are caused by the fact that at all times we need to ensure
that this surface is a material one and contains the particles of the fluid.

Let us define the position of the surface by its elevation 7 relative to some
previously known surface which we shall refer to as the reference surface (see
Fig. 5.2). This surface may be horizontal and may indeed be the undisturbed water
surface or may simply be a previously calculated surface. If 7 is measured in the
direction of the vertical coordinate which we shall call x;, we can write

n(t, X1,Xy) = X3 = X3pep (5.1)

Noting that 7 is the position of the particle on the surface, we observe that

dx; dx, dx; dn
T2 L R Y P T (52)
and from Eq. (5.1,) we have finally
dn n n o o, g
p_ ~_Oom,  On  On_0n 5.3
QT Ty Ty, T TV (5:3)
where
< [0 o717
= T - = = 4
il V=2 (54)

We immediately observe that 1 obeys a pure convection equation (see Chapter 2) in
terms of the variables ¢, u;,u, and u; in which u; is a source term. At this stage it is
worthwhile remarking that this surface equation has been known for a very long
time and was dealt with previously by upwind differences, in particular those intro-
duced on a regular grid by Dawson.” However in Chapter 2, we have already
discussed other perfectly stable, finite element methods, any of which can be used
for dealing with this equation. In particular the characteristic—Galerkin procedure
can be applied most effectively.
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It is important to observe that when the steady state is reached we simply have
us :u]%—i—uz— (5.5)

which ensures that the velocity vector is tangential to the free surface. The solution
method for the whole problem can now be fully discussed.

5.2.3 Iterative solution procedures

An iterative procedure is now fairly clear and several alternatives are possible.

Mesh updating
The first of these solutions is that involving mesh updatings, where we proceed as
follows. Assuming a known reference surface, say the original horizontal surface of
the water, we specify that the pressure and tangential traction on this surface are
zero and solve the resulting fluid mechanics problem by the methods of the previous
chapter. Using the CBS algorithm we start with known values of the velocities and
find the necessary increment obtaining u" "' and p"*' from initial values. At the
same time we solve the increment of 7 using the newly calculated values of the
velocities. We note here that this last equation is solved only in two dimensions on
a mesh corresponding to the projected coordinates of x; and x,.

At this stage the surface can be immediately updated to a new position which now
becomes the new reference surface and the procedure can then be repeated.

Hydrostatic adjustment

Obviously the method of repeated mesh updating can be extremely costly and in
general we follow the process described as hydrostatic adjustment. In this process
we note that once the incremental 7 has been established, we can adjust the surface
pressure at the reference surface by

Ap" = An'pg (5.6)

Some authors say that this is a use of the Bernoulli equation but obviously it is a
simple disregard of any acceleration forces that may exist near the surface and of
any viscous stresses there. Of course this introduces an approximation but this
approximation can be quite happily used for starting the following step.

If we proceed in this manner until the solution of the basic flow problem is well
advanced and the steady state has nearly been reached we have a solution which is
reasonably accurate for small waves but which can now be used as a starting point
of the mesh adjustment if so desired.

In all practical calculations it is recommended that many steps of the hydrostatic
adjustment be used before repeating the mesh updating which is quite expensive. In
many ship problems it has been shown that with a single mesh quite good results
can be obtained without the necessity of proceeding with mesh adjustment. We
shall refer to such examples later.

The methodologies suggested here follow the work of Hino et al., Idelshon et al.,
Lohner ef al. and Ofiate er al.”>~'® The methods which we discussed in the context
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of ships here provide a basis on which other free surface problems could be started at
all times and are obviously an improvement on a very primitive adjustment of surface
by trial and error. However, some authors recommend alternatives such as pseudo-
concentration methods,'” which are more useful in the context of mould ﬁlling,zo*22
etc. We shall not go into that in detail further and interested readers can consult the
necessary references.

5.2.4 Numerical examples

Example 1. A submerged hydrofoil We start with the two-dimensional problem shown
in Fig. 5.3, where a NACAO0012 aerofoil profile is used in submerged form as a hydro-
foil which could in the imagination of the reader be attached to a ship. This is a model
problem, as many two-dimensional situations are not realistic. Here the angle of
attack of the flow is 5° and the Froude number is 0.5672. The Froude number is
defined as

Ul
VgL
In Fig. 5.4, we show the pressure distribution throughout the domain and the

comparison of the computed wave profiles with the experimental® and other

numerical solutions.'* In Figs 5.3 and 5.4, the mesh is moved after a certain
number of iterations using an advancing front technique.
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Fig. 5.3 A submerged hydrofoil. Mesh updating procedure. Euler flow. Mesh after 1900 iterations.
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Fig. 5.4 A submerged hydrofoil. Mesh updating procedure. Euler flow. (a) Pressure distribution. (b) Compar-
ison with experiment.

Figure 5.5 shows the same hydrofoil problem solved now using hydrostatic
adjustment without moving the mesh. For the same conditions, the wave profile is
somewhat under-predicted by the hydrostatic adjustment (Fig. 5.5(b)) while the
mesh movement over-predicts the peaks (Fig. 5.4(b)).

In Fig. 5.6, the results for the same hydrofoil in the presence of viscosity are
presented for different Reynolds numbers. As expected the wake is now strong as
seen from the velocity magnitude contours (Fig. 5.6(a—d)). Also at higher Reynolds
numbers (5000 and above), the solution is not stable behind the aerofoil and here
an unstable vortex street is predicted as shown in Fig. 5.6(c) and 5.6(d). Figure
5.6(e) shows the comparison of wave profiles for different Reynolds numbers.

Example 2. Submarine In Fig. 5.7, we show the mesh and wave pattern contours for a
submerged DARPA submarine model. Here the Froude number is 0.25. The con-
verged solution is obtained by about 1500 time steps using a parallel computing
environment. The mesh consisted of approximately 321 000 tetrahedral elements.
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Fig. 5.5 A submerged hydrofoil. Hydrostatic adjustment. Euler flow. (a) Pressure contours and surface wave
pattern. (b) Comparison with experiment.2>

Example 3. Sailing boat The last example presented here is that of a sailing boat. In
this case the boat has a 25° heel angle and a drift angle of 4°. Here it is essential to use
either Euler or Navier—Stokes equations to satisfy the Kutta—Joukoski condition as
the potential form has difficulty in satisfying these conditions on the trailing edge of
the keel and rudder.

Here we used the Euler equations to solve this problem. Figure 5.8(a) shows a
surface mesh of hull, keel, bulb and rudder. A total of 104 577 linear tetrahedral
elements were used in the computation. Figure 5.8(b) shows the wave profile contours
corresponding to a sailing speed of 10 knots.
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Fig. 5.6 A submerged hydrofoil. Hydrostatic adjustment. Navier-Stokes flow. (a)-(d) Magnitude of total
velocity contours for different Reynolds numbers. (e) Wave profiles for different Reynolds numbers.
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Fig. 5.7 Submerged DARPA submarine model. (a) Surface mesh. (b) Wave pattern.
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Fig. 5.8 A sailing boat. (a) Surface mesh of hull, keel, bulb and rudder. (b) Wave profile.

5.3 Buoyancy driven flows

5.3.1 General introduction and equations

In some problems of incompressible flow the heat transport equation and the
equations of motion are weakly coupled. If the temperature distribution is known
at any time, the density changes caused by this temperature variation can be



154  Free surfaces, buoyancy and turbulent incompressible flows

evaluated. These may on occasion be the only driving force of the problem. In this
situation it is convenient to note that the body force with constant density can be
considered as balanced by an initial hydrostatic pressure and thus the driving force
which causes the motion is in fact the body force caused by the difference of local
density values. We can thus write the body force at any point in the equations of
motion (4.2) as

p[aw 0 144 — P9 o) (5:8)

o o] T "oy,

where p is the actual density applicable locally and p., is the undisturbed constant
density. The actual density entirely depends on the coefficient of thermal expansion
of the fluid as compressibility is by definition excluded. Denoting the coefficient of
thermal expansion as (37, we can write

br =1 <§’T’) (59)

where T is the absolute temperature. The above equation can be approximated to

1 p—ps
Sp 5.10
TS o (5.10)
Replacing the body force term in the momentum equation by the above relation we
can write
8”1‘ 0 8p 37’,7

— (uu)| = — : (T, —T 5.11
o[+ )] =~ 5+ S BT =) (s.11)

For perfect gases, we have
p=2 (5.12)

T RT

and here R is the universal gas constant. Substitution of the above equation (assuming
negligible pressure variation) into Eq. (5.9) leads to

1

b= (5.13)

The various governing non-dimensional numbers used in the buoyancy flow
calculations are the Grashoff number (for a non-dimensionalization procedure see
references 24, 25)

_g8r(To — L

.14
Gr o (5.14)
and the Prandtl number
14
Pr=— .1
r=- (5.15)

where L is a reference dimension, and v and « are the kinematic viscosity and thermal
diffusivity respectively and are defined as

v="-—, oa=— 5.16
- - (5.16)
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where p is the dynamic viscosity, k is the thermal conductivity and ¢, the specific heat
at constant pressure. In many calculations of buoyancy driven flows, it is convenient
to use another non-dimensional number called the Rayleigh number (Ra) which is the
product of Gr and Pr.

In many practical situations, both buoyancy and forced flows are equally strong
and such cases are often called mixed convective flows. Here in addition to the
above-mentioned non-dimensional numbers, the Reynolds number also plays a
role. The reader can refer to several available books and other publications to get
further details. >

5.3.2 Natural convection in cavities

Fundamental buoyancy flow analysis in closed cavities can be classified into two
categories. The first one is flow in closed cavities heated from the vertical sides
and the second is bottom-heated cavities (Rayleigh—Benard convection). In the
former, the CBS algorithm can be applied directly. However, the latter needs some
perturbation to start the convective flow as they represent essentially an unstable
problem.

Figure 5.9 shows the results obtained for a closed square cavity heated at a vertical
side and cooled at the other.?* Both the horizontal sides are assumed to be adiabatic.
At all surfaces both of the velocity components are zero (no slip conditions). The
nonuniform mesh used in this problem is the same as that in Fig. 4.3 of the previous
chapter for all Rayleigh numbers considered.

As the reader can see, the essential features of a buoyancy driven flow are captured
using the CBS algorithm. The quantitative results compare excellently with the
available benchmark solutions as shown in Tables 5.1.%*

Figure 5.10 shows the effect of directions of gravity at a Rayleigh number of 1
The adapted meshes for two different Rayleigh numbers are shown in Fig. 5.11.

Another problem of buoyancy driven convection in closed cavities is shown in
Fig. 5.12.° Here an ‘L’ shaped cavity is considered where part of the enclosure is
heated from the side and another part from the bottom. As we can see, several
vortices appear in the horizontal portion of the cavity while the vertical portion
contains only one vortex.

3
003!

. . . . . . . 24
Table 5.1 Natural convection in a square enclosure. Comparison with available numerical solutions.

References are shown in square brackets

Ra v "ijax Ulﬂ‘dX

[40] [41] CBS [40] [41] CBS [40] [41] CBS
10° 1.116 L1188 LI117 1174 1175 1167 3.696 3.697 3.692
10* 2243 2245 2243 5081 5074 5075  19.64 19.63 19.63
10° 4517 4522 4521 9121 9.619  9.153  68.68 68.64 68.85
10° 8797 8825 8806 164l 16.81 1649 2213 220.6 2216
107 - 1652 1640 - 30.17 3033 - 699.3 702.3

4x 107 - 23.78 23.64 - - 43.12 - - 1417
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Fig. 5.12 Natural convection in a square enclosure. Streamlines and isotherms for different gravity directions,
Ra=10°.

5.3.3 Buoyancy in porous media flows

Studies of convective motion and heat transfer in a porous medium are essential to
understand many engineering problems including solidification of alloys, convection
over heat exchanger tubes, thermal insulations, packed and fluidized beds, etc. We
give a brief introduction to such flows in this section.

Porous medium flows are different from those of single-phase fluid flows due to the
presence of the solid particles which for our purpose are considered as rigidly fixed in
space. Many textbooks on porous medium flows are already available.*>*? Similar
porous media occur in problems of geomechanics in which generally the motion of
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the fluid and of the solid are coupled. For a survey of this problem the reader is
referred to the recent book by Zienkiewicz et al.**

Here we use the averaged governing equations derived by many investigators to
solve buoyancy driven convection in a porous medium.***® These equations can be
summarized for a variable porosity medium as*

continuity
3 U;
ax i

=0 (5.17)

momentum

Tou, O quu;
p![ai*axj(u’f)]

__19 g>+18< aui)‘w"‘cpfV”"“’fwgiﬁ(u—n (5.18)

€ Ox; £ Ox; 'u(()xi K VE €32
energy
oT oT 0 oT
R [& o axi:| Oy (k 8xi> 319

where u; are the averaged velocity components, ¢ is the porosity of the medium, « is
the medium permeability, C is a constant derived from experimental correlations and
here we use Ergun’s relations*’ in our calculations (some investigators vary the non-
linear term using a non-dimensional parameter called the Forchheimer number;
interested readers can consult reference 48), k is the thermal conductivity of the
porous medium and R, is the averaged heat capacity given as

Rh = E(pcp)f + (1 - E)(pcp)s (520)

In the above equations, subscripts f and s correspond to fluid and solid respectively.
The following relation for permeability can be used if the porosity and average
particle size are known

3 2
ed,

T150(1 — &) (5-21)

K
where d,, is the particle size. Some researchers use a value for 1 different from the fluid
viscosity. However, here we generally use the fluid viscosity. More details on the
derivation of the above equations can be found in the cited articles.

As the structure of the above governing equations is similar to that of the single-
phase flow equations, the application of the CBS algorithm is obvious.*~> However
the fully explicit or semi-implicit forms cannot be used efficiently due to strong porous
medium terms. Here, to overcome the time step limitations imposed by these terms
(last two terms before the body force in the momentum equation) we need to solve
them implicitly, though quasi-implicit schemes*’** can be used. Although the CBS
algorithm is an obvious choice here, use of convection stabilizing terms can be
neglected in low Rayleigh number (Reynolds number) porous media flows.
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The Darcy number and thermal conductivity ratio are the two additional non-
dimensional parameters used in porous media flows in addition to the Rayleigh
and Prandtl numbers. The Darcy number and thermal conductivity ratio are defined
respectively as

K N k
Da = 2 k' = [ (5.22)
where k. is a reference thermal conductivity value (fluid value).

Figure 5.13 shows the velocity vector plots of buoyancy driven convection in a
square cavity for different Darcy and Rayleigh numbers.*® As we can see, at smaller
Darcy numbers (107°) the velocity is higher near the walls and decreases towards the
centre of the enclosure (Fig. 5.13(a)). However at higher Darcy numbers (1072), a
pattern similar to single-phase flow is obtained with the velocity increasing from
zero at the walls to a maximum value and then decreasing towards the centre of
the cavity, indicating the viscous effects. Figure 5.13(b) shows a condition between
Figs 5.13(a) and 5.13(b) and here the transition from the Darcy to non-Darcy flow
regime occurs.

These governing equations approach a set of single-phase fluid equations when
¢ — 1. Thus these equations are suitable for solving problems in which both a
porous medium and single-phase domains are involved.

5.4 Turbulent flows
5.4.1 General remarks

We have observed that in many situations of viscous flow it is impossible to obtain
steady-state results. The example of flow past a cylinder given in Fig. 4.16 illustrates
the point well. As the speed increases the steady-state picture becomes oscillatory and
the well-known von Karman street develops.

For higher speed the oscillations and eddies become smaller and distributed
throughout the whole fluid domain. Whenever this happens the situation is that of
turbulence and here unfortunately direct simulation is almost out of the question
though many attempts at doing so are being made for realistic problems. It would
be necessary to use many millions or hundreds of millions of elements to model
reasonably the behaviour of the flow in real situations at high Reynolds numbers
where turbulence is large, and for this reason attempts have been made to create
approximate models which can be time averaged.““64 Here continuation of the
direct numerical simulation (DNS)**® is used in so-called large eddy simulation
(LES)*"%® but that is also very costly. For this reason simpler models involving n
additional equations have been created and perform reasonably satisfactorily
although they cannot always represent reality.

We do not have space in this book to implement and discuss all the above models in
detail. The reader will observe that, in addition to solving the flow equations with
viscosity which now varies from point to point, it is necessary to solve n additional
effective transport equations each one corresponding to a specific defined parameter.
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Such calculations can readily be carried out by the same algorithm as that used in
CBS and indeed this was done for some problems.*

5.4.2 Averaged flow equations

The Reynolds averaged Navier—Stokes equations can be derived by considering the
flow variables as

p=0d+¢ (5.23)

where ¢ is the mean turbulent value and ¢’ is the fluctuating component. With such
averaged quantities the governing equations can be rewritten as

continuity
o
=0 5.24
ox, (5.24)
momentum
oG 9, 1dp 19 O

— — (T — = : 2
ox; 8x4(%u’) paxi+p Ox;  Ox; &i (525)

J J
where 7;; is the deviatoric stress tensor (Eq. 3.7) given as

- 314,- 5uj 2 auk
= (Gt e s ) (320

and 7',»1; is the Reynolds stress tensor divided by the density. We use the first-order
closure models and here the Boussinesq model is employed which relates the shear
stresses and turbulent eddy viscosity v¢. The turbulent viscosity can be calculated
by different methods. We use the one and two equation models to demonstrate the
application of the CBS algorithm. We can write the following relation from the
Boussinesq model

— 30

ox;  0x; 3 0x; y (527)

R __ Il
Tij = Ul

(&T[ ou;, 2 Ouy ) 2
where v is the turbulent eddy kinematic viscosity and « is the turbulent kinetic
energy. The reader will observe that the form of the original equations (governing
laminar flow) is now reproduced in terms of the averaged quantities, thus confirming
that the standard CBS algorithm can be used once again. Before proceeding further, it
is necessary to define the turbulent eddy viscosity which we do below.

One-equation model
In the momentum equation the turbulent eddy viscosity is determined from the
following relation

vp = 0}1/4&1/21,“ (5.28)
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where ¢, is a constant equal to 0.09, & is the turbulent kinetic energy and /,, is the
Prandtl mixing length (= 0.4y, where y is the distance from the nearest wall). The
Prandtl mixing length /,, is often related to the length scale of the turbulence L as

C/3 1/4
l, = <C~) L (5.29)
D

where Cj and ¢}, are constants.

The turbulent kinetic energy « is calculated from the following transport equation

Ok  Ouk 0O (1/ I/T) Ok gOu;

o
where oy is a constant generally equal to unity. Further,

32

Two-equation models (k-¢ and k-w models)
Here in addition to the s equation given above, another transport equation of the
form

Oe  Oue 0 vr\ Oe € rOu; £
— - — | =——-Cg—Tii=—+Cr,—=0 5.32
ot + ox;  0Ox; ( 05> ox; ! Pl ox; tla K (5.32)
is solved and here C.; is a constant ranging between 1.45 and 1.55, C,, is a constant in
the range 1.92-2.0 and o, is also a constant equal to 1.3.

In the above two-equation model, v is calculated as

Iiz

=c,— 5.33

vr (’[L c ( )

These models are not valid near walls. To model wall effects, either wall functions or
low Reynolds number versions have to be employed. For further details on these
models the reader can refer to the relevant works.’*® We give the following low

Reynolds number versions for the sake of completeness.

Low Reynolds number models
For the one-equation model, the following form is suggested by Wolfstein™

Vl = C/lt/4l<’l/zlmf}1, (534)
e=C i/Z (5.35)
D s, .
and
fy=1- ¢ O-160RK f=1- ¢ 0263k R, = \/WIX/ (5.36)

where y is the distance from the nearest wall.
For two-equation models, the coefficients ¢,, C.; and C., appearing in the two-
equation model discussed above are multiplied by damping functions f,, f.; and f,
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respectively and these functions are given as®?

fo=(1- eo.omst)z(l _’_225) (537)
3
Ja=1+ (0};05) (5.38)
Ju
and
fo=1-e"R (5.39)

where R, = x*/ve. The wall boundary conditions are x = 0 and de/dy = 0.

A model of somewhat similar form is known as the x-w model. This differs in the
definition of the function w which obeys a similar equation to that of ¢ now with a
different parameter.®’

The reader can now notice that the one and two equation models are again similar
to the convection—diffusion equations discussed in Chapter 2 and thus the use of the
CBS algorithm is obvious. A detailed study is described in reference 62. Here we give
some results of flow past a backward facing step at a Reynolds number of 3025. In
Fig. 5.14(a) the velocity profiles are compared with the experimental data of
Denham et al.’® As can be seen the agreement between the results is good. The stream-
lines and details of the recirculation are given in Fig. 5.14(b).

3.0
2.5 5‘.
209 & % & $ ¢ . k del (CBS
> 15 -& model ( )
1.0 o e Exp.
O.(5) 4 P |! |
0 2.0 4.0 6.0 8.0 10.0 120 140 16.0

U/Uo
1 unit of U/U, = 1 unit of X/h

(a) Velocity profiles downward of the step

(b) Streamline pattern

Fig. 5.14 Turbulent flow past a backward facing step, velocity profiles and streamlines, Re = 3025.
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Compressible high-speed gas flow

6.1 Introduction

Problems posed by high-speed gas flow are of obvious practical importance. Applica-
tions range from the exterior flows associated with flight to interior flows typical of
turbomachinery. As the cost of physical experiments is high, the possibilities of
computations were explored early and the development concentrated on the use
of finite difference and associated finite volume methods. It was only in the 1980s
that the potential offered by the finite element forms were realized and the field is
expanding rapidly.

One of the main advantages in the use of the finite element approximation here is its
capability of fitting complex forms and permitting local refinement where required.
However, the improved approximation is also of substantial importance as practical
problems will often involve three-dimensional discretization with the number of
degrees of freedom much larger than those encountered in typical structural problems
(10°-10" DOF are here quite typical).

For such large problems direct solution methods are obviously not practicable and
iterative methods based generally on transient computation forms are invariably
used. Here of course we follow and accept much that has been established by the
finite difference applications but generally will lose some computational efficiency
associated with structured meshes typically used here. However, the reduction of
the problem size which, as we shall see, can be obtained by local refinement and
adaptivity will more than compensate for this loss (though of course structured
meshes are included in the finite element forms).

In Chapters 1 and 3 we have introduced the basic equations governing the flow of
compressible gases as well as of incompressible fluids. Indeed in the latter, as in
Chapter 4, we can introduce small amounts of compressibility into the procedures
developed there specifically for incompressible flow. Here we shall deal with high-
speed flows with Mach numbers generally in excess of 0.5. Such flows will usually
involve the formation of shocks with characteristic discontinuities. For this reason
we shall concentrate on the use of low-order elements and of explicit methods,
such as those introduced in Chapters 2 and 3.

Here the pioneering work of the first author’s colleagues Morgan, Léhner and
Peraire must be acknowledged.' ~® It was this work that opened the doors to practical
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finite element analysis in the field of aeronautics. We shall refer to their work
frequently.

In the first practical applications the Taylor—Galerkin process outlined in Sec. 2.10
of Chapter 2 for vector-valued variables was used almost exclusively. Here we recom-
mend however the CBS algorithm discussed in Chapter 3 as it presents a better
approximation and has the advantage of dealing directly with incompressibility,
which invariably occurs in small parts of the domain, even at high Mach numbers
(e.g., in stagnation regions).

6.2 The governing equations

The Navier—Stokes governing equations for compressible flow were derived in
Chapter 1. We shall repeat only the simplified form of Eqs (1.24) and (1.25) here
again using indicial notation. We thus write, for i = 1,2, 3,

o® OF, 0G; B
E+8xi+8x,~+Q_0 (6.1)
with
®" = [p, puy, pus, pu3, pE] (6.22)
F! = [pu;, puju; + pbyi, pustty + pby,, pusu; + pdy;, pHuy) (6.2b)
0 oT
GiT = {0, —T1iy —T2iy —T3i 787)@- (Tijui) — k(é)xi ﬂ (6.2c)
and
Q" = (0, —pfi, —pfs, —pfs, —pfitt: — q1) (6.2d)
In the above
Ou;  Ou; 2 Ouy,
- —L) .= K 6.2
T uK@ijrax,-) 73 8xk] (6:2¢)

The above equations need to be ‘closed’ by addition of the constitutive law relating
the pressure, density and energy [see Eqs (1.16) and (1.17)]. For many flows the ideal
gas law® suffices and this is

)4

= 6.3
P=RT (6.3)
where R is the universal gas constant.
In terms of specific heats
R= (Cp - CU) = (’7 - 1)C1) (64)
where
Y= Z
c

v

is the ratio of the constant pressure and constant volume specific heats.
The internal energy e is given as

L \p
e=c,T=|——]= 6.5
(v—l)p (6.3)
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and hence

1 U;U;
E=—— a 6.6
P (7_1)p+ 3 (6.6a)

v Ul
H = pE = — 6.6b
pH = pE +p (7_1>p+ 5 (6.6b)

The variables for which we shall solve are usually taken as the set of Eq. (6.2a), i.e.
p; pu; and pE

but of course other sets could be used, though then the conservative form of Eq. (6.1)
could be lost.

In many of the problems discussed in this section inviscid behaviour will be
assumed, with

Gl‘ZO

and we shall then deal with the Euler equations.

In many problems the Euler solution will provide information about the main
features of the flow and will suffice for many purposes, especially if augmented by
separate boundary layer calculations (see Sec. 6.12). However, in principle it is
possible to include the viscous effects without much apparent complication. Here in
general steady-state conditions will never arise as the high speed of the flow will be
associated with turbulence and this will usually be of a small scale capable of
resolution with very small sized elements only. If a ‘finite’ size of element mesh is
used then such turbulence will often be suppressed and steady-state answers will be
obtained only in areas of no flow separation or oscillation. We shall in some examples
include such full Navier—Stokes solutions using a viscosity dependent on the tempera-
ture according to Sutherland’s law.*® In the SI system of units for air this gives

14572

N T .
H= T <10 (67)

where T is in degrees Kelvin. Further turbulence modelling can be done by using the
Reynolds’ average viscosity and solving additional transport equations for some
additional parameters in the manner discussed in Sec. 5.4, Chapter 5. We shall
show some turbulent examples later.

6.3 Boundary conditions — subsonic and supersonic flow

The question of boundary conditions which can be prescribed for Euler and Navier—
Stokes equations in compressible flow is by no means trivial and has been addressed
in a general sense by Demkowicz et al.,*’ determining their influence on the existence
and uniqueness of solutions. In the following we shall discuss the case of the inviscid
Euler form and of the full Navier—Stokes problem separately.

We have already discussed the general question of boundary conditions in Chapter
3 dealing with numerical approximations. Some of these matters have to be repeated
in view of the special behaviour of supersonic problems.

171



172

Compressible high-speed gas flow
6.3.1 Euler equation

Here only first-order derivatives occur and the number of boundary conditions is less
than that for the full Navier—Stokes problem.

For a solid wall boundary, T,,, only the normal component of velocity u, needs to be
specified (zero if the wall is stationary). Further, with lack of conductivity the energy
flux across the boundary is zero and hence pE (and p) remain unspecified.

In general the analysis domain will be limited by some arbitrarily chosen external
boundaries, T',, for exterior or internal flows, as shown in Fig. 6.1 (see also Sec. 3.6,
Chapter 3).

Here, as discussed in Sec. 2.10.3, it will in general be necessary to perform a
linearized Riemann analysis in the direction of the outward normal to the boundary
n to determine the speeds of wave propagation of the equations. For this linearization
of the Euler equations three values of propagation speeds will be found

)\1 = Uuy,
A =u,+c (6.8)
M =1u,—c

where u, is the normal velocity component and c¢ is the compressible wave celerity

(speed of sound) given by
P
c=,/— 6.9
Vo (6.9)

As of course no disturbances can propagate at velocities greater than those of Eqs
(6.8) and in the case of supersonic flow, i.e. when the local Mach number is

el (6.10)
¢

M

we shall have to distinguish two possibilities:
(a) supersonic inflow boundary where
u, < —c

and the analysis domain cannot influence the exterior, for such boundaries all
components of the vector ® must be specified; and

External flow Internal flow

Fig. 6.1 Boundaries of a computation domain. ', wall boundary; T, fictitious boundary.
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(b) supersonic outflow boundaries where
u, >c¢
and here by the same reasoning no components of ® are prescribed.

For subsonic boundaries the situation is more complex and here the values of ®
that can be specified are the components of the incoming Riemann variables.
However, this may frequently present difficulties as the incoming wave may not be
known and the usual compromises may be necessary as in the treatment of elliptic
problems possessing infinite boundaries (see Chapter 3, Sec. 3.6).

6.3.2 Navier-Stokes equations

Here, due to the presence of second derivatives, additional boundary conditions are
required.

For the solid wall boundary, T',, all the velocity components are prescribed
assuming, as in the previous chapter for incompressible flow, that the fluid is attached
to the wall. Thus for a stationary boundary we put

ui=0

Further, if conductivity is not negligible, boundary temperatures or heat fluxes will
generally be given in the usual manner.

For exterior boundaries T'; of the supersonic inflow kind, the treatment is identical
to that used for Euler equations. However, for outflow boundaries a further approxi-
mation must be made, either specifying tractions as zero or making their gradient zero
in the manner described in Sec. 3.6, Chapter 3.

6.4 Numerical approximations and the CBS algorithm

Various forms of finite element approximation and of solution have been used for
compressible flow problems. The first successfully used algorithm here was, as we
have already mentioned, the Taylor—Galerkin procedure either in its single-step or
two-step form. We have outlined both of these algorithms in Chapter 2, Sec. 2.10.
However the most generally applicable and advantageous form is that of the CBS
algorithm which we have presented in detail in Chapter 3. We recommend that this
be universally used as not only does it possess an efficient manner of dealing with
the convective terms of the equations but it also deals successfully with the incompres-
sible part of the problem. In all compressible flows in certain parts of the domain
where the velocities are small, the flow is nearly incompressible and without
additional damping the direct use of the Taylor—Galerkin method may result in
oscillations there. We have indeed mentioned an example of such oscillations in
Chapter 3 where they are pronounced near the leading edge of an aerofoil even at
quite high Mach numbers (Fig. 3.4). With the use of the CBS algorithm such
oscillations disappear and the solution is perfectly stable and accurate.

In the same example we have also discussed the single-step and two-step forms of
the CBS algorithm. Both were found acceptable for use at lower Mach numbers.
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However for higher Mach numbers we recommend the two-step procedure which is
only slightly more expensive than the single-step version.

As we have already remarked if the algorithm is used for steady-state problems it is
always convenient to use a localized time step rather than proceed with the same time
step globally. The full description of the local time step procedure is given in Sec. 3.3.4
of Chapter 3 and this was invariably used in the examples of this chapter when only
the steady state was considered.

We have mentioned in the same section, Sec. 3.3.4, the fact that when local time
stepping is used nearly optimal results are obtained as At and Az, are the same
or nearly the same. However, even in transient problems it is often advantageous
to make use of a different Az in the interior to achieve nearly optimal damping there.

The only additional problem that we need to discuss further for compressible flows
is that of the treatment of shocks which is the subject of the next section.

6.5 Shock capture

Clearly with the finite element approximation in which all the variables are inter-
polated using C, continuity the exact reproduction of shocks is not possible. In all
finite element solutions we therefore represent the shocks simply as regions of very
high gradient. The ideal situation will be if the rapid variations of variables are con-
fined to a few elements surrounding the shock. Unfortunately it will generally be
found that such an approximation of a discontinuity introduces local oscillations
and these may persist throughout quite a large area of the domain. For this reason,
we shall usually introduce into the finite element analysis additional viscosities
which will help us in damping out any oscillations caused by shocks and, yet, deriving
as sharp a solution as possible.

Such procedures using artificial viscosities are known as shock capture methods. It
must be mentioned that some investigators have tried to allow the shock discontinuity
to occur explicitly and thus allowed a discontinuous variation of an analytically
defined kind. This presents very large computational difficulties and it can be said
that to date such trials have only been limited to one-dimensional problems and
have not really been used to any extent in two or three dimensions. For this reason
we shall not discuss such shock fitting methods further.*'*

The concept of adding additional viscosity or diffusion to capture shocks was first
suggested by von Neumann and Richtmyer® as early as 1950. They recommended
that stabilization can be achieved by adding a suitable artificial dissipation term
that mimics the action of viscosity in the neighbourhood of shocks. Significant
developments in this area are those of Lapidus,* Steger,” MacCormack and
Baldwin®® and Jameson and Schmidt.*’ At Swansea, a modified form of the
method based on the second derivative of pressure has been developed by Peraire
et al.'® and Morgan et al.*® for finite element computations. This modified form of
viscosity with a pressure switch calculated from the nodal pressure values is used sub-
sequently in compressible flow calculations. Recently an anisotropic viscosity for
shock capturing® has been introduced to add diffusion in a more rational way.

The implementation of artificial diffusion is very much simpler than shock filling
and we proceed as follows. We first calculate the approximate quantities of the
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solution vector by using the direct explicit method. Now we modify each scalar com-
ponent of these quantities by adding a correction which smoothes the result. Thus for
instance if we consider a typical scalar component quantity ¢ and have determined the

values of ¢" !, we establish the new values as below.
0 ([ 0¢
7+ 1 n+ 1
= Atp,— | =— 11
S ¢ + Z:u’tl axi <axl) (6 )

where i, is an appropriate artificial diffusion coefficient. It is important that whatever
the method used, the calculation of u, should be limited to the domain which is close
to the shock as we do not wish to distort the results throughout the problem. For this
reason many procedures add a switch usually activated by such quantities as gradients
of pressure. In all of the procedures used we can write the quantity y, as a function of
one or more of the independent variables calculated at time n. Below we only quote
two of the possibilities.

Second derivative based methods

In these it is generally assumed that the coefficient i, must be the same for each of the
equations dealt with and only one of the independent variables ® is important. It has
usually been assumed that the most typical variable here is the pressure and that we
should write*

82p
(9x,~ Bxi

where C, is a non-dimensional coefficient, u is the velocity vector, ¢ the speed of
sound, p is the average pressure and the subscript e indicates an element. In the
above equation, the second derivative of pressure over an element can be established
either by averaging the smoothed nodal pressure gradients or using any of the
methods described in Chapter 4, Sec. 4.5.
A particular variant of the above method evaluates approximately the value of the
second derivative of any scalar variable ¢ (e.g. p) as®
2
hzaij ~(M—M,;)¢ (6.13)
ox
where M and M; are consistent and lumped mass matrices respectively and the
overline indicates a nodal value. Though the derivation of the above expression is
not obvious, the reader can verify that in the one-dimensional finite difference
approximation it gives the correct result. The heuristic extension to multidimensional
problem therefore seems reasonable. Now p, for this approximate method can be
rewritten in any space dimensions as (Eq. 6.12)
lu] + ¢

lu] + ¢

fig = Ci’

(6.12)

e

l]a = Ceh (M - ML)IN) (614)

Note now that i, is a nodal quantity. However a further approximation can give the
following form of u, over elements:

Hae = Ceh(‘u| + C)Se (615)

where S, is the element pressure switch which is a mean of nodal switches S;
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calculated as™®

| (pi — i)
S, = e PRl 6.16
Yelpi — prl (6.16)

It can be verified that S; = 1 when the pressure has a local extremum at node i and
S; = 0 when the pressure at node 7 is the average of values for all nodes adjacent to
node i (e.g. if p varies linearly). The user-specified coefficient C, normally varies
between 0.0 and 2.0.

The smoothed variables can now be rewritten with the Galerkin finite element
approximations (from Eqgs. 6.11, 6.13 and 6.15) as

o' =" + AM;! sz" (M —M,)¢" (6.17)
Note that, in Eq. (6.15), (Ju| + ¢) is replaced by //At, to obtain the above equation.
This method has been widely used and is very efficient. The cut-off localizing the effect
of added diffusion is quite sharp. A direct use of second derivatives can however be
employed without the above-mentioned modifications. In such a procedure, we
have the following form of smoothing (from Egs. 6.11 and 6.12)

s ONT ON -\ =n
gr (JQ o I dQ>¢ (6.18)

ox?
This method was successful in many viscous problems. Another alternative is to use
residual based methods.

lul + ¢

N;I#*l — J)n+l _ AIMZ1C€h3

Residual based methods

In these methods p, = u(R;), where R; is the residual of the ith equation. Such
methods were first introduced in 1986 by Hughes and Malett®® and later used by
many others.”! ~>*

A variant of this was suggested by Codina.* We sometimes refer to this as aniso-
tropic shock capturing. In this procedure the artificial viscosity coefficient is adjusted
by subtracting the diffusion introduced by the characteristic—Galerkin method along
the streamlines. We do not know whether there is any advantage gain in this but we
have used the anisotropic shock capturing algorithm with considerable success. The
full residual based coefficient is given by

o _c R
“ [Vl
We shall not discuss here a direct comparison between the results obtained by differ-

ent shock capturing diffusivities, and the reader is referred to various papers already
published. >

(6.19)

6.6 Some preliminary examples for the Euler equation

The computation procedures outlined can be applied with success to many transient
and steady-state problems. In this section we illustrate its performance on a few
relatively simple examples.
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6.6.1 Riemann shock tube - a transient problem in one
dimension’

This is treated as a one-dimensional problem. Here an initial pressure difference
between two sections of the tube is maintained by a diaphragm which is destroyed
at r = 0. Figure 6.2 shows the pressure, velocity and energy contours at the seventieth
time increment, and the effect of including consistent and lumped mass matrices is
illustrated. The problem has an analytical, exact, solution presented by Sod”’ and
the numerical solution is from reference 1.

6.6.2 Isothermal flow through a nozzle in one dimension

Here a variant of the Euler equation is used in which isothermal conditions are
assumed and in which the density is replaced by pa where a is the cross-sectional

p
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Fig. 6.2 The Riemann shock tube problem."®’ The total length is divided into 100 elements. Profile illustrated
corresponds to 70 time steps (At = 0.25). Lapidus constant C 5, = 1.0.
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area' assumed to vary as>®
(x —2.5)
12.5

The speed of sound is constant as the flow is isothermal and various conditions at
inflow and outflow limits were imposed as shown in Fig. 6.3. In all problems

a=10+ for0<x<5 (6.20)
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Fig. 6.3 Isothermal flow through a nozzle." Forty elements of equal size used.
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steady state was reached after some 500 time steps. For the case with supersonic
inflow and subsonic outflow, a shock forms and Lapidus-type artificial diffusion
was used to deal with it, showing in Fig. 6.3(c) the increasing amount of ‘smearing’
as the coefficient Cy,;, is increased.

1.0
Inflow
y 2016 elements
0.6 T—> 1089 nodes
e > 3 0 X

(a) Structured uniform mesh

L

—
A%

V.=

t=4.0

(b) Solution — contours of pressure at various times

Fig. 6.4 Transient supersonic flow over a step in a wind tunnel* (problem of Woodward and Colella®). Inflow
Mach 3 uniform flow.
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6.6.3 Two-dimensional transient supersonic flow over a step

This final example concerns the transient initiation of supersonic flow in a wind tunnel
containing a step. The problem was first studied by Woodward and Colella®® and the
results of reference 4 presented here are essentially similar.

In this problem a uniform mesh of linear triangles, shown in Fig. 6.4, was used and
no difficulties of computation were encountered although a Lapidus constant
Crap = 2.0 had to be used due to the presence of shocks.

6.7 Adaptive refinement and shock capture in Euler
problems

6.7.1 General

The examples of the previous section have indicated the formation of shocks both in
transient and steady-state problems of high-speed flow. Clearly the resolution of such
discontinuities or near discontinuities requires a very fine mesh. Here the use of
‘engineering judgement’, which is often used in solid mechanics by designing a priori
mesh refining near singularities posed by corners in the boundary, etc., can no longer
be used. In problems of compressible flow the position of shocks, where the refine-
ment is most needed, is not known in advance. For this and other reasons, the use
of adaptive mesh refinement based on error indicators is essential for obtaining
good accuracy and ‘capturing’ the location of shocks. It is therefore not surprising
that the science of adaptive refinement has progressed rapidly in this area and
indeed, as we shall see later, has been extended to deal with Navier—Stokes equations
where a higher degree of refinement is also required in boundary layers. We have
discussed the history of such adaptive development and procedures for its use in
Sec. 4.5, Chapter 4.

6.7.2 The h-refinement process and mesh enrichment

Once an approximate solution has been achieved on a given mesh, the local errors can
be evaluated and new element sizes (and elongation directions if used) can be deter-
mined for each element. For some purposes it is again convenient to transfer such
values to the nodes so that they can be interpolated continuously. The procedure
here is of course identical to that of smoothing the derivatives discussed in Sec. 4.5,
Chapter 4.

To achieve the desired accuracy various procedures can be used. The most obvious
is the process of mesh enrichment in which the existing mesh is locally subdivided into
smaller elements still retaining the ‘old’ mesh in the configuration. Figure 6.5(a) shows
how triangles can be readily subdivided in this way. With such enrichment an obvious
connectivity difficulty appears. This concerns the manner in which the subdivided
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(a) Triangle subdivision

(b) Restoration of connectivity

Fig. 6.5 Mesh enrichment. (a) Triangle subdivision. (b) Restoration of connectivity.

elements are connected to ones not so refined. A simple process is illustrated showing
element halving in the manner of Fig. 6.5(b). Here of course it is fairly obvious that
this process, first described in reference 9, can only be applied in a gradual manner to
achieve the predicted subdivisions. However, element elongation is not possible with
such mesh enrichment.

Despite such drawbacks the procedure is very effective in localizing (or capturing)
shocks, as we illustrate in Fig. 6.6.

In Fig. 6.6, the theoretical solution is simply one of a line discontinuity shock in
which a jump of all the components of ® occurs. The original analysis carried out
on a fairly uniform mesh shows a very considerable ‘blurring’ of the shock. In
Fig. 6.6 we also show the refinement being carried out at two stages and we see
how the shock is progressively reduced in width.

In the above example, the mesh enrichment preserved the original, nearly
equilateral, element form with no elongation possible.

Whenever a sharp discontinuity is present, local refinement will proceed indefinitely
as curvatures increase without limit. Precisely the same difficulty indeed arises in mesh
refinement near singularities for elliptic problems® if local refinement is the only
guide. In such problems, however, the limits are generally set by the overall energy
norm error consideration and the refinement ceases automatically. In the present
case, the limit of refinement needs to be set and we generally achieve this limit by
specifying the smallest element size in the mesh.

The / refinement of the type proposed can of course be applied in a similar manner
to quadrilaterals. Here clever use of data storage allows the necessary refinement to be
achieved in a few steps by ensuring proper transitions.®!
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Fig. 6.6 Supersonic, Mach 3, flow past a wedge. Exact solution forms a stationary shock. Successive mesh
enrichment and density contours.

6.7.3 h-refinement and remeshing in steady state
two-dimensional problems

Many difficulties mentioned above can be resolved by automatic generation of meshes
of a specified density. Such automatic generation has been the subject of much
research in many applications of finite element analysis. We have discussed this
subject in Sec. 4.5, Chapter 4. The closest achievement of a prescribed element size
and directionality can be obtained for triangles and tetrahedra. Here the procedures
developed by Peraire er al.'""'¢ are most direct and efficient, allowing element stretch-
ing in prescribed directions (though of course the amount of such stretching is
sometimes restricted by practical considerations).

We refer the reader for details of such mesh generation to the original publications.
In the examples that follow we shall exclusively use this type of mesh adaptivity.

In Fig. 6.7 we show a simple example!! of shock wave reflection from a solid wall.
Here only a typical ‘cut-out’ is analysed with appropriate inlet and outlet conditions



Analysis domain

Adaptive refinement and shock capture in Euler problems 183

()

Fig. 6.7 Reflection of a shock wave at a wall'' =Euler equations. A sequence of meshes, (a) nodes: 279, elements: 478, (b) nodes: 265, elements: 479, (c) nodes: 285,
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184 Compressible high-speed gas flow

imposed. The elongation of the mesh along the discontinuity is clearly shown. The
solution was remeshed after the iterations nearly reached a steady state.

In Fig. 6.8 a somewhat more complex example of iypersonic flow around a blunt,
two-dimensional obstacle is shown. Here it is of interest to note that:
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(b) The corresponding density

(c) The corresponding pressure contours

Fig. 6.8 Hypersonic flow past a blunt body'' at Mach 25, 22° angle of attack. Initial mesh, nodes: 547,
elements: 978; first mesh, nodes: 383, elements: 696; final mesh, nodes: 821, elements: 1574.
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Fig. 6.9 Supersonic flow past a full cylinder.>® M = 3, (a) geometry and boundary conditions, (b) adapted
mesh, nodes: 12651, elements: 24979, (c) Mach contours using second derivative shock capture and (d)

Mach contours using anisotropic shock capture.
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Fig. 6.11 Interaction of an impinging and bow shock wave."” Adapted mesh and pressure contours.

1. A detached shock forms in front of the body.

2. A very coarse mesh suffices in front of such a shock where simple free stream flow
continues and the mesh is made “finite’ by a maximum element size prescription.

3. For the same minimum element size a reduction of degrees of freedom is achieved
by refinement which shows much improved accuracy.

For such hypersonic problems, it is often claimed that special methodologies of
solution need to be used. References 62—64 present quite sophisticated methods for
dealing with such high-speed flows.

In Figs 6.9 and 6.10, we show the results of supersonic Mach 3 flow past a full
cylinder.®® The mesh (Fig. 6.9(b)) is adapted along the shock front to get a good
resolution of the shock. The mesh behind the cylinder is very fine to capture the
recirculatory motion. In Figs 6.9(c) and 6.9(d), the Mach contours are obtained
using the CBS algorithm using the second derivative based shock capture and
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residual based shock capture respectively. In Fig. 6.10, the coefficient of pressure
values and Mach number distribution along the mid-height through the surface
of the cylinder are presented. Here the results generated by the MUSCL®* scheme
are also plotted for the sake of comparison. As seen the comparison is excellent,
especially for anisotropic (residual-based) scheme.

Figure 6.11 shows a yet more sophisticated example in which an impinging shock
interacts with a bow shock. An extremely fine mesh distribution was used here to
compare results with experiment,'” which were reproduced with high precision.

6.8 Three-dimensional inviscid examples in steady state

Two-dimensional problems in fluid mechanics are much rarer than two-dimensional
problems in solid mechanics and invariably they represent a very crude approxi-
mation to reality. Even the problem of an aerofoil cross-section, which we have
discussed in Chapter 3, hardly exists as a two-dimensional problem as it applies
only to infinitely long wings. For this reason attention has largely been focused,
and much creative research done, in developing three-dimensional codes for solving
realistic problems. In this section we shall consider some examples derived by the
use of such three-dimensional codes and in all these the basic element used will be
the tetrahedron which now replaces the triangle of two dimensions. Although the
solution procedure and indeed the whole formulation in three dimensions is
almost identical to that described for two dimensions, it is clear that the number of
unknowns will increase very rapidly when realistic problems are dealt with. It is
common when using linear order elements to encounter several million variables as
unknowns and for this reason here, more than anywhere else, iterative processes
are necessary.

Indeed much effort has gone into the development of special procedures of solution
which will accelerate the iterative convergence and which will reduce the total
computational time. In this context we should mention three approaches which are
of help.

The recasting of element formulation in an edge form

Here a considerable reduction of storage can be achieved by this procedure and some
economies in computational time achieved. We have not discussed this matter in
detail but refer the reader to reference 26 where the method is fully described and
for completeness we summarize the essential features of edge formulation in
Appendix C.

Multigrid approaches

In the standard iteration we proceed in a time frame by calculating point by point the
changes in various quantities and we do this on the finest mesh. As we have seen this
may become very fine if adaptivity is used locally. In the multigrid solution, as initially
introduced into the finite element field, the solution starts on a coarse mesh, the results
of which are used subsequently for generating the first approximation to the fine
mesh. Several iterative steps are then carried out on the fine mesh. In general a
return to the coarse mesh is then made to calculate the changes of residuals there
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and the process is repeated on several meshes done subsequently. This procedure can
be used on several meshes and the iterative process is much accelerated. We discuss
this process in Appendix D in a little more detail. However, we quote here several
references®~® in which such multigrid procedures have been used and these are of
considerable value.

Multigrid methods are obviously designed for meshes which are ‘nested’ i.e. in
which coarser and finer mesh nodes coincide. This need not be the case generally.
In many applications completely different meshes of varying density are used at

various stages.

Parallel computation

The third procedure of reducing the solution time is to use parallization. We do not
discuss it here in detail as the matter is potentially coupled with the computational
aspects of the problem. Here the reader should consult the current literature on the
subject.*6738

In what follows we shall illustrate three-dimensional applications on a few inviscid
examples as this section deals with Euler problems. However in Sec. 6.10 we shall
return to a fully three-dimensional formulation using viscous Navier—Stokes
equations.

6.8.1 Solution of the flow pattern around a complete aircraft

In the early days of numerical analysis applied to computational fluid dynamics which
used finite differences, no complete aircraft was analysed as in general only structured
meshes were admissible. The analysis thus had to be carried out on isolated
components of the aircraft. Later construction of distorted and partly structured
meshes increased the possibility of analysis. Nevertheless the first complete aircraft
analyses were done only in the mid-1980s. In all of these, finite elements using
unstructured meshes were used (though we include here the finite volume formulation
which was almost identical to finite elements and was used by Jameson et al.70). The
very first aircraft was the one dealt with using potential theory in the Dassault
establishment. The results were publisshed later by Periaux and coworkers.”' Very
shortly after that a complete supersonic aircraft was analysed by Peraire e al.'® in
Swansea in 1987.

Figure 6.12 shows the aircraft analysed in Swansea'® which is a supersonic fighter
of generic type at Mach 2. The analysis was made slightly adaptive though adaptivity
was not carried very far (due to cost). Nevertheless the refinement localized the shocks
which formed.

In the analysis some 125000 elements were used with approximately 70 000 nodes
and therefore some 350000 variables. This of course is not a precise analysis and
many more variables would be used currently to get a more accurate representation
of flow and pressure variables.

A more sophisticated analysis is shown in the plate at the front of the book. Here a
civil aircraft in subsonic flow is modelled and this illustrates the use of multigrid

189
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Fig. 6.12 Adaptive three-dimensional solution of compressible inviscid flow around a high speed (Mach 2)
aircraft.'® Nodes: 70000, elements: 125 000.

methods. In this particular multigrid applications three meshes of different refinement
were used and the iteration is fully described in reference 26. In this example the total
number of unknown quantities was 1616 000 in the finest mesh and indeed the details
of the subdivision are given in the legend of the plate.
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(b)

Fig. 6.13 Supersonic car, THRUST SSC.? (a) car and (b) finite element surface mesh. (Image used in (a)
courtesy of SSC Programme Ltd. Photographer Jeremy C.R. Davey.)

6.8.2 THRUST - the supersonic car?’ 2872

A very similar problem to that posed by the analysis of the whole aircraft was given
much more recently by the team led by Professor Morgan. This was the analysis of a
car which was attempting to create the world speed record by establishing this in the
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supersonic range. This attempt was indeed successfully made on 15 October 1997.
Unlike in the problem of the aircraft, the alternative of wind tunnel tests was not
available. Whilst in aircraft design, wind tunnels which are supersonic and subsonic
are well used in practice (though at a cost which is considerably more than that of a
numerical analysis) the possibility of doing such a test on a motor car was virtually
non-existent. The reason for this is the fact that the speed of the air flow past the
body of the car and the speed of the ground relative to the car are identical.
Any test would therefore require the bed of the wind tunnel to move at a speed
in excess of 750+ miles an hour. For this reason calculations were therefore
preferable.

The moving ground will of course create a very important boundary layer such as
that which we will discuss in later sections. However the simple omission of viscosity
permitted the inviscid solution by a standard Euler-type program to be used. It is

Fig. 6.14 Supersonic car, THRUST ssc? pressure contours (a) full configuration, (b) front portion.
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well known that the Euler solution is perfectly capable of simulating all shocks very
adequately and indeed results in very well defined pressure distributions over the
bodies whether it is over an aircraft or a car. The object of the analysis was indeed
that of determining such pressure distributions and the lift caused by these pressures.
It was essential that the car should remain on the ground, indeed this is one of the con-
ditions of the ground speed record and any design which would result in substantial lift
overcoming the gravity on the car would be disastrous for obvious reasons.

The complete design of the supersonic car was thus made with several alternative
geometries until the computer results were satisfactory. Here it is interesting however
to have some experimental data and the preliminary configuration was tested by a
rocket driven sled. This was available for testing rocket projectiles at Pendine
Sands, South Wales, UK. Here a 1:25 scale model of the car was attached to such
a rocket and 13 supersonic and transonic runs were undertaken.

In Fig. 6.13(a), we show a photograph®’ of the car concerned after winning the
speed record in the Nevada desert. In Fig. 6.13(b) a surface mesh is presented from
which the full three-dimensional mesh at the surrounding atmosphere was generated
(surface mesh, nodes: 39528, elements: 79060; volume mesh, nodes: 134272,
elements: 887 634). We do not show the complete mesh as of course in a three-dimen-
sional problem this is counterproductive.

In Fig. 6.14, pressure contours>’ on the surface of the car body are given and
somewhat similar contours are shown on the covers of this book.

In Fig. 6.15, a detailed comparison of CFD results®’ with experiments is shown.
The results of this analysis show a remarkable correlation with experiments. The
data points which do not appear close to the straight line are the result of the sampling
point being close to, but the wrong side of, a shock wave. If conventional correlation
techniques for inviscid flow (viscous correction) are applied, these data points also lie
on the straight line. In total, nine pressure points were used situated on the upper and

Key CFD Computer
X M=0.71 results results
o M=1.08
+M=0.96 6T 6
oM=1.05 +
4+ [m)
21 +/H
+
(¢}
, , RS , , , PS.L
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m] —4
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Fig. 6.15 Supersonic car, THRUST SSC%’ comparison of finite element and experimental results.
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lower surfaces of the car. The plot shows the comparison of pressures at specific
positions on the car for Mach numbers of 0.71, 0.96, 1.05 and 1.08.

6.8.3 Other examples

There are many other three-dimensional examples which could at this stage be quoted

but we only show here a three-dimensional analysis of an engine intake'® at Mach 2.
This is given in Fig. 6.16.

e WA A NA
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(b) Mesh on analysis surface (c) Pressure contours

Fig. 6.16 Three-dimensional analysis of an engine intake'® at Mach 2 (14 000 elements).



Transient two and three-dimensional problems

6.9 Transient two and three-dimensional problems

In all of the previous problems the time stepping was used simply as an iterative device
for reaching the steady-state solutions. However this can be used in real time and the
transient situation can be studied effectively. Many such transient problems have been
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Fig. 6.17 A transient problem with adaptive remeshing.” Simulation of a sudden failure of a pressure vessel.
Progression of refinement and velocity patterns shown. Initial mesh 518 nodes.
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dealt with from time to time and here we illustrate the process on three examples. The
first one concerns an exploding pressure vessel”® as a two-dimensional model as
shown in Fig. 6.17. Here of course adaptivity had to be used and the mesh is regen-
erated every few steps to reproduce the transient motion of the shock front.

A similar computation is shown in Fig. 6.18 where a diagrammatic form of a shuttle
launch is modelled again as a two-dimensional problem.”® Of course this two-
dimensional model is purely imaginary but it is useful for showing the general
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Fig. 6.18 A transient problem with adaptive remeshing.”> Model of the separation of shuttle and rocket.
Mach 2, angle of attack —4°, initial mesh 4130 nodes.
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Fig. 6.19 Separation of a generic shuttle vehicle and rocket booster?® (a) Initial surface mesh and surface
pressure; (b) final surface mesh and surface pressure.

configuration. In Fig. 6.19 however, we show a three-dimensional shuttle approxi-
mating closely to reality.” The picture shows the initial configuration and the separa-
tion from the rocket.

6.10 Viscous problems in two dimensions

Clearly the same procedures which we have discussed previously could be used for the
full Navier—Stokes equations by the introduction of viscous and other heat diffusion
terms. Although this is possible we will note immediately that very rapid gradients of
velocity will develop in the boundary layers (we have remarked on this already in
Chapter 4) and thus special refinement will be needed there. In the first example we
illustrate a viscous solution by using meshes designed a priori with fine subdivision
near the boundary. However, in general the refinement must be done adaptively
and here various methodologies of doing so exist. The simplest of course is the
direct use of mesh refinement with elongated elements which we have also discussed
in Chapter 4. This will be dealt with by a few examples in Sec. 6.10.2. However in
Sec. 6.10.3 we shall address the question of much finer refinement with very elongated
elements in the boundary layer. Generally we shall do such a refinement with such a
structured grid near the solid surfaces merging into the general unstructured meshing
outside. In that section we shall introduce methods which can automatically separate
structured and unstructured regions both in the boundary layer and in the shock
regions.
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Unstructured, adaptively refined
triangles

10-15 ‘body’ layers of quadrilateral
[ elements with length |, corresponding
d

adaptive layer thickness d and
number of layers decided by user

>

(a) A two-dimensional sublayer of structured quadrilaterals

]d
[—
——

‘Body’ layer subdivision in three dimensions joining a tetrahedral mesh

(b) A three-dimensional sublayer of prismatic elements

Fig. 6.20 Refinement in the boundary layer.

The methodology is of course particularly important in problems of three dimen-
sions. In Sec. 6.11 we show some realistic applications of boundary layer refinement
and here we shall again refer to turbulence.

The special refinement which we mentioned above is well illustrated in Fig. 6.20. In
this we show the possibility of using a structured mesh with quadrilaterals in the
boundary layer domain (for two-dimensional problems) and a three-dimensional
equivalent of such a structured mesh using prismatic elements. Indeed such elements
have been used as a general tool by some investigators.”f76

6.10.1 A preliminary example

The example given here is that in which both shock and boundary layer development
occur simultaneously in high-speed flow over a flat plate.”” This problem was studied
extensively by Carter.”® His finite difference solution is often used for comparison pur-
poses although some oscillations can be seen even there despite a very high refinement.

A fixed mesh which is graded from a rather fine subdivision near the boundary to a
coarser one elsewhere is shown in Fig. 6.21. We obtained the solution using as usual
the CBS algorithm. In Fig. 6.22, comparisons with Carter’s’® solution are presented
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N

|

(a)

()

Fig. 6.21 Viscous flow past a flat plate (Carter problem).”” Mach 3, Re = 1000 (a) mesh, nodes: 6750,
elements: 13, 172 contours of (b) pressure and (c) Mach number.
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Fig. 6.22 Viscous flow past a flat plate (Carter problem).77 Mach 3, Re = 1000. (a) Pressure distribution
along the plate surface, (b) exit velocity profile.

and it will be noted that the CBS solution appears to be more consistent, avoiding
oscillations near the leading edge.

6.10.2 Adaptive refinement in both shock and boundary layer

In this section we shall pursue mesh generation and adaptivity in precisely the same
manner as we have done in Chapter 4 and previously in this chapter, i.e. using
elongated finite elements in the zones where rapid variation of curvature occurs.
An example of this application is given in Fig. 6.23. Here now a problem of the
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Fig. 6.23 Continued.

interaction of a boundary layer generated by a flat plate and externally impinging
shock is presented.” In this problem, some structured layers are used near the wall
in addition to the direct approach of Chapter 4. The reader will note the progressive
refinement in the critical area. The second problem dealt with by such a direct
approach again using the CBS algorithm is that of high-speed flow over an aerofoil.
The flow is transonic and is again over a NACAO0012 aerofoil. This problem was
extensively studied by many researchers.’*®! In Fig. 6.24, we show the final mesh
after three iterations as well as contours of density. The density contours present
some instability which are indeed observed by many authors at large distance from
the aerofoil in the wake."

In such a problem it would be simpler to refine near the boundary or indeed at the
shock using structured meshes and the idea of introducing such refinement is explored
in the next section.
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Fig. 6.24 Transonic viscous flow past a NACA0012 aerofoil, 2 Mach 0.95, (a) adapted mesh nodes: 16 388,
elements: 32522, (b) density contours, (c) density contours in the wake.
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1162 points, 2258 elements Mach number
(c)

Fig. 6.25 Hybrid mesh for supersonic viscous flow past a NACA0012 aerofoil 2 Mach 2, and contours

of Mach number, (a) initial mesh, (b) first adapted mesh, (c) final mesh, (d) mesh near stagnation point
(shown opposite).
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Fig. 6.25 Continued.



206 Compressible high-speed gas flow
6.10.3 Special adaptive refinement for boundary layers and shocks

As with the direct iterative approach, it is difficult to arrive at large elongations during
mesh generation, and the procedures just described tend to be inaccurate. For this
reason it is useful to introduce a structured layer within the vicinity of solid bound-
aries to model the boundary layers and indeed it is possible to do the same in the
shocks once these are defined. Within the boundary layer this can be done readily
as shown in Fig. 6.20 using a layer of structured triangles or indeed quadrilaterals.
On many occasions triangles have been used here to avoid the use of two kinds of
elements in the same code. However if possible it is better to use directly quadrilat-
erals. The same problem can of course be done three dimensionally and we shall in
Sec. 6.11 discuss applications of such layers. Again in the structured layer we can
use either prismatic elements or simply tetrahedra though if the latter are used
many more elements are necessary for the same accuracy. It is clear that unless the
structured meshes near the boundary are specified a priori, an adaptive procedure
will be somewhat complicated and on several occasions fixed boundary meshes
have been used. However alternatives exist and here two possibilities should be
mentioned. The first possibility, and that which has not yet been fully exploited, is
that of refinement in which structured meshes are used in both shocks and boundary
layers and the width of the domains is determined after some iterations. The

|30

Fig. 6.26 Structured grid in boundary layer for a two-component aerofoil.” Advancing boundary normals.
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Fig. 6.27 Hypersonic viscous flow at Mach 8.15 over a double ellipsoid.®" () Initial surface mesh total nodes:
25990 and elements: 139808,

procedure is somewhat involved and has been used with success in many trial
problems as shown by Zienkiewicz and Wu.*® We shall not describe the method in
detail here but essentially structured meshes again composed of triangles or at least
quadrilaterals divided into two triangles were used near the boundary and in the
shock regions. The subdivision and accuracy obtained was excellent. In the second
method we could imagine that normals are created on the boundaries, and a
boundary layer thickness is predicted using some form of boundary layer analytical
computation.’* ** Within this layer structured meshes are adopted using a
geometrical progression of thickness. The structured boundary layer meshing can
of course be terminated where its need is less apparent and unstructured meshes
continued outside. In this procedure we shall use the simple direct refinement of
the type discussed in the previous section.

Figure 6.25 illustrates supersonic flow around an NACAO0O012 aerofoil using the
automatic generation of structured and unstructured domains taken from reference
80. The second method is illustrated in Fig. 6.26 on a two-component aerofoil.

6.11 Three-dimensional viscous problems

The same procedures which we have described in the previous section can of course be
used in three dimensions. Quite realistic high Reynolds number boundary layers were

207



208 Compressible high-speed gas flow

Fig. 6.27 (Continued) (b) adapted mesh total nodes: 79023 and elements: 441 760, (c) pressure contours,
(d) Mach contours.

so modelled. Figure 6.27 shows the viscous flow at a very high Reynolds number
around a forebody of a double ellipsoid form.*! In this example a structured bound-
ary layer is assumed a priori.

The second example concerns a more sophisticated use of a structured subgrid
procedure using local normals executed for a turbulent flow around an ONERA
M6 wing attached to an aircraft body (Fig. 6.28).%



Boundary layer—inviscid Euler solution coupling 209

| VP 50
2007
| " Vﬂkﬁgﬁﬁﬁ"i

N7

L/ ‘ A
L

/ Pk
e 1

KA
| A

Gt
ﬂﬂ;‘ﬁ? :
)»‘;:f

T
v ki
A A
Vi atin
:,mamb,] <] ’
Ay

S A,
“!’Iif'ff’ﬁ.rfw
ik

(a)

Fig. 6.28 Turbulent, viscous, compressible flow past a ONERA M6 wing.>* (a) Surface mesh, elements:
48056.

In this example a turbulent x-w model was used similar to the x-e model. As we
described in Chapter 5 an additional solution for two parameters is required.
Figure 6.28(c) also shows the comparison of the coefficient of pressure values with
experimental data.®?

6.12 Boundary layer—inviscid Euler solution coupling

It is well known that high-speed flows which exist without substantial flow separation
develop a fairly thin boundary layer to which all the viscous effects are confined. The
flow outside this boundary layer is purely inviscid. Such problems have for some years
been solved approximately by using pure Euler solutions from which the pressure
distribution is obtained. Coupling these solutions with a boundary layer approxima-
tion written for a very small thickness near the solid body provides the complete
solution. The theory by which the separation between inviscid and viscous domains



210 Compressible high-speed gas flow

ﬁ% ¥
o “//

"/
;F
!

i
. !
i /!
! ! !

Fig. 6.28 (Continued) (b) pressure contours.

is predicted is that based on the work of Prandtl and for which much development has
taken place since his original work. Clearly various methods of solving boundary
layer problems can be used and many different techniques of inviscid solution can
be implemented.

In the boundary layer full Navier—Stokes equations are used and generally these
equations are specialized by introducing the assumptions of a boundary layer in
which no pressure variation across the thickness occurs.

An alternative to solving the equations in the whole boundary layer is the
integral approach in which the boundary layer equations need to be solved only on
the solid surface. Here the ‘transpiration velocity model’ for laminar flows** and
the ‘lag-entrainment’ method®> for turbulent flows are notable approaches.
Further extensions of these procedures can be found in many available research
articles.®~°

Many recent studies illustrate the latest developments and implementation pro-
cedures of viscous—inviscid coupling.”’ ™ Although the use of such viscous—inviscid
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coupling is not directly applicable in problems where boundary layer separation
occurs, many studies are available to deal with separated flows.”*™*® We do not
give any further details of viscous—inviscid coupling here and the reader can refer
to the quoted references and Appendix E.

211



212 Compressible high-speed gas flow

6.13 Concluding remarks

This chapter describes the most important and far-reaching possibilities of finite
element application in the design of aircraft and other high-speed vehicles. The
solution techniques described and examples presented illustrate that the possibility
of realistic results exists. However, we do admit that there are still many unsolved
problems. Most of these refer to either the techniques used for solving the equations
or to modelling satisfactorily viscous and turbulence effects. The paths taken for
simplifying and more efficient calculations have been outlined previously and we
have mentioned possibilities such as multigrid methods, edge formulation, etc.,
designed to achieve faster convergence of numerical solutions. However full model-
ling of boundary layer effects is much more difficult, especially for high-speed
flows. Use of boundary layer theory and turbulence models is of course only an
approximation and here it must be stated that much ‘engineering art’ has been
used to achieve acceptable results. This inside knowledge is acquired from the use
of data available from experiments and becomes necessary whether the turbulence
models of any type are used or whether boundary layer theories are applied directly.
In either case the freedom of choice is given to the user who will decide which
model is satisfactory and which is not. For this reason the subject departs from
being a precise mathematical science. The only possibility for such a science exists
in direct turbulence modelling. Here of course only the Navier—Stokes equations
which we have previously described are solved in a transient state when steady-
state solutions do not exist. Doing this may involve billions of elements and at the
moment is out of reach. We anticipate however that within the near future both
computers and the methods of solution will be developed to such an extent that
such direct approaches will become a standard procedure. At that time this chapter
will serve purely as an introduction to the essential formulation possibilities. One
aspect which can be visualized is that realistic three-dimensional turbulent computa-
tions will only be used in regions where these effects are important, leaving the rest to
simpler Eulerian flow modelling. However the computational procedure which we are
all striving for must be automatic and the formulation must be such that all choices
made in the computation are predictable rather than imposed.
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Shallow-water problems

7.1 Introduction

The flow of water in shallow layers such as occur in coastal estuaries, oceans, rivers,
etc., is of obvious practical importance. The prediction of tidal currents and eleva-
tions is vital for navigation and for the determination of pollutant dispersal which,
unfortunately, is still frequently deposited there. The transport of sediments
associated wth such flows is yet another field of interest.

In free surface flow in relatively thin layers the horizontal velocities are of primary
importance and the problem can be reasonably approximated in two dimensions.
Here we find that the resulting equations, which include in addition to the horizontal
velocities the free surface elevation, can once again be written in the same conserva-
tion form as the Euler equations studied in previous chapters:

0® OF;, 0G;

51‘ + ax,- + axi

+Q=0 fori=1,2 (7.1)

Indeed, the detailed form of these equations bears a striking similarity to those of
compressible gas flow — despite the fact that now a purely incompressible fluid (water)
is considered. It follows therefore that:

1. The methods developed in the previous chapters are in general applicable.
2. The type of phenomena (e.g. shocks, etc.) which we have encountered in compres-
sible gas flows will occur again.

It will of course be found that practical interest focuses on different aspects. The
objective of this chapter is therefore to introduce the basis of the derivation of the
equation and to illustrate the numerical approximation techniques by a series of
examples.

The approximations made in the formulation of the flow in shallow-water bodies
are similar in essence to those describing the flow of air in the earth’s environment
and hence are widely used in meteorology. Here the vital subject of weather prediction
involves their daily solution and a very large amount of computation. The interested
reader will find much of the background in standard texts dealing with the subject,
e.g. references 1 and 2.



The basis of the shallow-water equations

A particular area of interest occurs in the linearized version of the shallow-water
equations which, in periodic response, are similar to those describing acoustic
phenomena. In the next chapter we shall therefore discuss some of these periodic
phenomena involved in the action and forces due to waves.’

7.2 The basis of the shallow-water equations

In previous chapters we have introduced the essential Navier—Stokes equations and
presented their incompressible, isothermal form, which we repeat below assuming
full incompressibility. We now have the equations of mass conservation:

ou;
L= 7.2
8)6,- 0 ( a)
and momentum conservation:
Ou; 0 1Ldop 10
Uy T gy - 2 T, 2b
ot + Ox; () + p Ox;  p Ox; 7ij = 8 =0 (7.2b)

with i, j being 1, 2, 3.

In the case of shallow water flow which we illustrate in Fig. 7.1 and where the
direction xj is vertical, the vertical velocity u; is small and the corresponding accelera-
tions negligible. The momentum equation in the vertical direction can therefore be

A X3 153, wind drag Free surface Mean water
Xo P =pa level
A, —> (atmosphere) (datum)
m /
T T > X1
h

T

il

<
w5, bed “friction’

(a) Coordinates

A¢ us

_74

A U 4
Average velocity
(b) Velocity distribution

Fig. 7.1 The shallow-water problem. Notation.
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reduced to
1 op
it 0 7.3
S, T8 (7.3)
where g3 = —g is the gravity acceleration. After integration this yields
P =pg(n—x3) + pa (7.4)

as, when x3; = 7, the pressure is atmospheric ( p,) (which may on occasion not be
constant over the body of the water and can thus influence its motion).
On the free surface the vertical velocity u3 can of course be related to the total time
derivative of the surface elevation, i.e. (see Sec. 5.3 of Chapter 5)
s_Dn_on 0 O

u3—7:7

o1 1a 0 +u 28x2 (7.5a)

Similarly, at the bottom,
b _ DH WP In v On

us = dl 1(9’61 +uy; — 5)(?2 (75b)

assuming that the total depth H does not vary with time. Further, if we assume that
for viscous flow no slip occurs then

u) =13 =0 (7.6)
and also by continuity
u? =0

Now a further approximation will be made. In this the governing equations will be
integrated with the depth coordinate x; and depth-averaged governing equations
derived. We shall start with the continuity equation (7.2a) and integrate this in the
x5 direction, writing

K 81/{3 K 81 m 82
JiHaix:,) dX3+J a X d 3 J a X dx:; —0 (77)

As the velocities u; and u, are unknown and are not uniform, as shown in Fig. 7.1(b),
it is convenient at this stage to introduce the notion of average velocities defined so
that

1
-H
with i = 1,2. We shall now recall the Leibnitz rule of integrals stating that for any
function F(r,s) we can write

b0 o’ ob Oa
JiaaF(r s)dr = &Jﬂ, F(r,s)dr — F(b,s) s + F(a,s) s (7.9)
With the above we can rewrite the last two terms of Eq. (7.7) and introducing Eq. (7.6)

we obtain

n
J Ou; 0 i 0 (7.10)

Hax dx’; 6x,(Ulh) B iaxi



The basis of the shallow-water equations

with i = 1,2. The first term of Eq. (7.7) is, by simple integration, given as

gl
J N 4yy = (7.11)

—H 3x3
which, on using (7.5a), becomes

" Ouy o On On

JiH?)CS d)C3 = ot + u; 8)(1- (712)

Addition of Eqs (7.10) and (7.12) gives the depth-averaged continuity conservation
finally as

on o(hU;) oh 0O(hU;

oy 0hUy) _oh  O(hU))

ot ox;, ot ox =0 (7.13)

Now we shall perform similar depth integration on the momentum equations in the
horizontal directions. We have thus

K au,- 0 1 ap 1 87—,']'
I [m*ax_,@f”ﬂ*, 7 0% gf]

dx; = (7.14)
with i =1,2.

Proceeding as before we shall find after some algebraic manipulation that a conser-
vative form of depth-averaged equations becomes

ahU) 9 Lo, 1Jn
U+ 8- —HY) - ~| 7,d
5 +ax,.[ ULU; + 658 )=o), e
1 b OH hop
(=) —hg, —gh— H 2 _ 1
p(T31 T31) hgl g(l )axi+p axi 0 (7 5)

In the above the shear stresses on the surface can be prescribed externally, given, say,
the wind drag. The bottom shear is frequently expressed by suitable hydraulic
resistance formulae, e.g. the Chézy expression, giving

b rg|U|U;
T o

(7.16)

where

‘U|:\/ UZU,, 12172
and C is the Chézy coefficient.

In Eq. (7.15) g; stands for the Coriolis accelerations, important in large-scale
problems and defined as

g1 =80, & = —gU, (7.17)

where ¢ is the Coriolis parameter.
The 7;; stresses require the definition of a viscosity coefficient, 11y, generally of the
averaged turbulent kind, and we have

Tij#H(auiJraujzé 8uk) (7.18)
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Approximating in terms of average velocities, the remaining integral of Eq. (7.15) can

be written as
1 1 ou;, ou; 2 90U, h_
— - ~ — N ) = —7F. 1
pJ T dxs p'uHh<6xj + ax, 3 0y a)q() pT,_, (7.19)

Equations (7.13) and (7.15) cast the shallow-water problem in the general form of
Eq. (7.1), where the appropriate vectors are defined below.
Thus, with i =1, 2,

h
U =< U, (7.20a)
hU,
hU;
F, = { hU\U; + 6y 1 g(h* — H?) (7.20b)
hU,U; + 52i%g(h2 — H)
0
G, =q —(h/p)7; (7.20¢)

—(h/p)Tai
in which the relation (7.19) is used to give the internal average 7 in terms of the
average velocity gradients and

0
. OH hop, 1, gUU]
Q- | MUl H) et om0 T o (7.20d)
. OH hop, 1, gU,|U]
thl_g(h_H)Bixz—F;sz_;T}z I

The above, conservative, form of shallow-water equations was first presented in
references 4 and 5 and is generally applicable. However, many variants of the general
shallow-water equations exist in the literature, introducing various approximations.
In the following sections of this chapter we shall discuss time-stepping solutions of
the full set of the above equations in transient situations and in corresponding steady-
state applications. Here non-linear behaviour will of course be included but for
simplicity some terms will be dropped. In particular, we shall in most of the examples
omit consideration of viscous stresses 7;, whose influence is small compared with the
bottom drag stresses. This will, incidentally, help in the solution, as second-order

derivatives now disappear and boundary layers can be eliminated.
If we deal with the linearized form of Eqs (7.13) and (7.15), we see immediately that
on omission of all non-linear terms, bottom drag, etc., and approximately 7 ~ H, we

can write these equations as

oh 0
A(HU,) B B
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Noting that

Oh  On
= — H _—
n=nh and % = o1
the above becomes
on 0
T4 Z (HU) = 22
I(HU;) n
— 24+ gH—=0 7.22b
8l + & 6)(,' ( )
Elimination of HU; immediately yields
n 8 on
Z 7 H—L) = 7.2
or  Ox; (g 8x,—) 0 (7.23)

or the standard Helmholtz wave equation. For this, many special solutions are
analysed in the next chapter.

The shallow-water equations derived in this section consider only the depth-
averaged flows and hence cannot reproduce certain phenomena that occur in
nature and in which some velocity variation with depth has to be allowed for. In
many such problems the basic assumption of a vertically hydrostatic pressure
distribution is still valid and a form of shallow-water behaviour can be assumed.

The extension of the formulation can be achieved by an a priori division of the flow
into strata in each of which different velocities occur. The final set of discretized
equations consists then of several, coupled, two-dimensional approximations.
Alternatively, the same effect can be introduced by using several different velocity
‘trial functions’ for the vertical distribution, as was suggested by Zienkiewicz and
Heinrich.® Such generalizations are useful but outside the scope of the present text.

7.3 Numerical approximation

Both finite difference and finite element procedures have for many years been used
widely in solving the shallow-water equations. The latter approximation has been
applied relatively recently and Kawahara’ and Navon® survey the early applications
to coastal and oceanographic engineering. In most of these the standard procedures
of spatial discretization followed by suitable time-stepping schemes are adopted.gf16
In meteorology the first application of the finite element method dates back to 1972,
as reported in the survey given in reference 17, and the range of applications has been
increasing steadily.*>18~4!

At this stage the reader may well observe that with the exception of source terms,
the isothermal compressible flow equations can be transformed into the depth-
integrated shallow-water equations with the variables being changed as follows:

p (density) — h (depth)
u; (velocity) — U; (mean velocity)

p (pressure) — Lg(h> — H?)
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These similarities suggest that the characteristic-based-split algorithm adopted
in the previous chapters for compressible flows be used for the shallow-water
equations.***

The extension of effective finite element solutions of high-speed flows to shallow-
water problems has already been successful in the case of the Taylor—Galerkin
method.*> However, the semi-implicit form of the general CBS formulation provides
a critical time step dependent only on the current velocity of the flow U (for pure

convection):
h
At < — (7.24)
Ul
where / is the element size, instead of a critical time step in terms of the wave celerity
c=/gh:
h
< 7.25
¢+ U] (725)

which places a severe contraint on fully explicit methods such as the Taylor—Galerkin
approximation and others,**3? particularly for the analysis of long-wave propagation
in shallow waters and in general for low Froude number problems.

Important savings in computation can be reached in these situations obtaining for
some practical cases up to 20 times the critical (explicit) time step, without seriously
affecting the accuracy of the results. When nearly critical to supercritical flows must
be studied, the fully explicit form is recovered, and the results observed for these cases
are also excellent.**

In the examples that follow we shall illustrate several problems solved by the CBS
procedure, and also with the Taylor—Galerkin method.

7.4 Examples of application

7.4.1 Transient one-dimensional problems - a performance
assessment

In this section we present some relatively simple examples in one space dimension to
illustrate the applicability of the algorithms.

The first, illustrated in Fig. 7.2, shows the progress of a solitary wave® onto a
shelving beach. This frequently studied situation*®*’ shows well the progressive
steepening of the wave often obscured by schemes that are very dissipative.

The second example, of Fig. 7.3, illustrates the so-called ‘dam break’ problem
diagrammatically. Here a dam separating two stationary water levels is suddenly
removed and the almost vertical waves progress into the two domains. This problem,
somewhat similar to those of a shock tube in compressible flow, has been solved quite
successfully even without artificial diffusivity.

The final example of this section, Fig. 7.4, shows the formation of an idealized
‘bore’ or a steep wave progressing into a channel carrying water at a uniform speed
caused by a gradual increase of the downstream water level. Despite the fact that

4
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Wave

propagation

<«

a=0.1
I | 1y
Y
| 10 10 J////
40 T i
n =asech? "2 (3a)"2 (x—a") Initial
conditions

u=—(+"2a)n/(ox+n),a=0.1,g=1.0, 0= "30

(a) Problem statement

40 elements

80 elements

160 elements

IO

(b) Solution for 40, 80 and 160 elements
at various times

Fig. 7.2 Shoaling of a wave.

the flow speed is ‘subcritical’ (i.e. velocity < +/gh), a progressively steepening, travel-
ling shock clearly develops.

7.4.2 Two-dimensional periodic tidal motions

The extension of the computation into two space dimensions follows the same
pattern as that described in compressible formulations. Again linear triangles are
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Fig. 7.3 Propagation of waves due to dam break (Cj,, = 0). 40 elements in analysis domain. C = v/gH = 1,
At =0.25.

used to interpolate the values of i, hU, and hU,. The main difference in the solu-
tions is that of emphasis. In the shallow-water problem, shocks either do not
develop or are sufficiently dissipated by the existence of bed friction so that the
need for artificial viscosity and local refinement is not generally present. For this
reason we have not introduced here the error measures and adaptivity — finding
that meshes sufficiently fine to describe the geometry also usually prove sufficiently
accurate.

The first example of Fig. 7.5 is presented merely as a test problem. Here the
frictional resistance is linearized and an exact solution known for a periodic
msponse48 is used for comparison. This periodic response is obtained numerically
by performing some five cycles with the input boundary conditions. Although the
problem is essentially one dimensional, a two-dimensional uniform mesh was used
and the agreement with analytical results is found to be quite remarkable.

In the second example we enter the domain of more realistic applications.
Here the ‘test bed’ is provided by the Bristol Channel and the Severn Estuary, known
for some of the highest tidal motions in the world. Figure 7.6 shows the location and
the scale of the problem.

The objective is here to determine tidal elevations and currents currently existing
(as a possible preliminary to a subsequent study of the influence of a barrage which
some day may be built to harness the tidal energy). Before commencement of the

4,542—44.49



Examples of application 227
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Fig. 7.4 A 'bore’ created in a stream due to water level rise downstream (A). Level at A, n = 1 — coswt/30
(0 <t<30), 2 (30 <1). Levels and velocities at intervals of 5 time units, At = 0.5.

analysis the extent of the analysis domain must be determined by an arbitrary,
seaward, boundary. On this the measured tidal heights will be imposed.

This height-prescribed boundary condition is not globally conservative and also
can produce undesired reflections. These effects sometimes lead to considerable
errors in the calculations, particularly if long-term computations are to be carried
out (like, for instance, in some pollutant dispersion analysis). For these cases, more
general open boundary conditions can be applied, as, for example, those described
in references 35 and 36.

The analysis was carried out on four meshes of linear triangles shown in Fig. 7.7.
These meshes encompass two positions of the external boundary and it was found that
the differences in the results obtained by four separate analyses were insignificant.

The mesh sizes ranged from 2 to 5 km in minimum size for the fine and coarse sub-
divisions. The average depth is approximately 50 m but of course full bathygraphy
information was used with depths assigned to each nodal point.

The numerical study of the Bristol Channel was completed by a comparison of
performance between the explicit and semi-explicit algorithms.*® The results for
the coarse mesh were compared with measurements obtained by the Institute of
Oceanographic Science (I0S) for the M, tide,* with time steps corresponding to



228 Shallow-water problems
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Fig. 7.5 Steady-state oscillation i ha rectangular channel due to periodic forcing of surface elevation at an
inlet. Linear frictional dissipation.>2
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Fig. 7.6 Location map. Bristol Channel and Severn Estuary.

the critical (explicit) time step (50 s), 4 times (200 s) and 8 times (400 s) the critical time
step. A constant real friction coefficient (Manning) of 0.038 was adopted for all of
the estuary. Coriolis forces were included. The analysis proved that the Coriolis
effect was very important in terms of phase errors. Table 7.1 represents a compar-
ison between observations and computations in terms of amplitudes and phases
for seven different points which are represented in the location map (Fig. 7.6), for
the three different time steps described above. The maximum error in amplitude
only increases by 1.4% when the time step of 400s is used with respect to the
time step of 50s, while the absolute error in phases (—13°) is two degrees more
than the case of 50s (—11°). These bounds show a remarkable accuracy for the
semi-explicit model. In Fig. 7.8 the distribution of velocities at different times of
the tide is illustrated (explicit model).

In the analysis presented we have omitted details of the River Severn upstream of
the eastern limit (see Figs 7.6 and 7.9(a)), where a ‘bore’ moving up the river can be
observed. An approach to this phenomenon is made by a simplified straight
extension of the mesh used previously, preserving an approximate variation of the
bottom and width until the point G (Gloucester) (77.5km from Avonmouth), but
obviously neglecting the dissipation and inertia effects of the bends. Measurement
points are located at B and E, and the results (clevations) are presented in
Fig. 7.9(d) for the points A, B, E in time, along with a steady river flow. A typical
shape for a tidal bore can be observed for the point E, with fast flooding and a
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Table 7.1 Bristol Channel and Severn Estuary — observed results
and FEM computation (FL mesh) of tidal half-amplitude (m x 10%)

Location Observed FEM

Tenby 262 260 (—1%)
Swansea 315 305 (—3%)
Cardiff 409 411 ( 0%)
Porthcawl 317 327 (+3%)
Barry 382 394 (+3%)
Port Talbot 316 316 (—1%)
Newport 413 420 (+2%)
IlIfracombe 308 288 (—6%)
Minehead 358 362 (+1%)

smooth ebbing of water. (The flooding from the minimum to maximum level is in

less than 25 minutes.)

7.4.3 Tsunami waves

A problem of some considerable interest in earthquake zones is that of so-called

tidal waves or tsunamis. These are caused

0

!
}

Tre 1y

}

SN LAARIU I AN SN

Time =0

Time = 6 hours

—1m/s

Fig. 7.8 Velocity vector plots (FL mesh).

by sudden movements in the earth’s

Time = 3 hours

Time = 12 hours
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Fig. 7.9 Severn bore.

crust and can on occasion be extremely destructive. The analysis of such waves
presents no difficulties in the general procedure demonstrated and indeed is compu-
tationally cheaper as only relatively short periods of time need be considered. To
illustrate a typical possible tsunami wave we have created one in the Severn Estuary
just analysed (to save problems of mesh generation, etc., for another more likely

configuration).
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Fig. 7.9 Continued.

Here the tsunami is forced by an instantaneous raising of an element situated near
the centre of the estuary by some 6 m and the previously designed mesh was used
(FL). The progress of the wave is illustrated in Fig. 7.10. The tsunami wave was super-
imposed on the tide at its highest level — though of course the tidal motion was
allowed for.

One particular point only needs to be mentioned in this calculation. This is the
boundary condition on the seaward, arbitrary, limit. Here the Riemann decom-
position of the type discussed earlier has to be made if tidal motion is to be
incorporated and note taken of the fact that the tsunami forms only an outgoing
wave. This, in the absence of tides, results simply in application of the free boundary
condition there.

The clean way in which the tsunami is seen to leave the domain in Fig. 7.10 testifies
to the effectiveness of this process.
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Time = 10 min Time =20 min

Time = 30 min Time =40 min

Fig. 7.10 Severn tsunami. Generation during high tide. Water height contours (times after generation).



Examples of application 235

7.4.4 Steady-state solutions

On occasion steady-state currents such as may be caused by persistent wind motion or
other influences have to be considered. Here once again the transient form of explicit
computation proves very effective and convergence is generally more rapid than in
compressible flow as the bed friction plays a greater role.

The interested reader will find many such steady-state solutions in the literature. In
Fig. 7.11 we show a typical example. Here the currents are induced by the breaking of
waves which occurs when these reach small depths creating so-called radiation
stresses.®*%%° Obviously as a preliminary the wave patterns have to be computed
using procedures to be given later. The ‘forces’ due to breaking are the cause of
longshore currents and rip currents in general. The figure illustrates this effect on a

harbour.
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Fig. 7.11 Wave-induced steady-state flow past a harbour.°

It is of interest to remark that in the problem discussed, the side boundaries have
been ‘repeated’ to model an infinite harbour series.™

Another type of interesting steady-state (and also transient) problem concerns super-
critical flows over hydraulic structures, with shock formation similar to those present in
high-speed compressible flows. To illustrate this range of flows, the problem of a sym-
metric channel of variable width with a supercritical inflow is shown here. For a super-
critical flow in a rectangular channel with a symmetric transition on both sides, a
combination of a ‘positive’ jump and ‘negative’ waves, causing a decrease in depth,
appears. The profile of the negative wave is gradual and an approximate solution can
be obtained by assuming no energy losses and that the flow near the wall turns without
separation. The constriction and enlargement analysed here was 15°, and the final mesh
used was of only 6979 nodes, after two remeshings. The supercritical flow had an inflow
Froude number of 2.5 and the boundary conditions were as follows: heights and velo-
cities prescribed in inflow (left boundary of Fig. 7.12), slip boundary on walls (upper
and lower boundaries in Fig. 7.12) and free variables on the outflow boundary (right
side of Fig. 7.12). The explicit version with local time step was adopted. Figure 7.12
represents contours of heights, where ‘cross’-waves and ‘negative’ waves are contained.
One can observe the ‘gradual’ change in the behaviour of the negative wave created at

the origin of the wall enlargement.
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Fig. 7.12 Supercritical flow and formation of shock waves in symmetric channel of variable width contours of
h. Inflow Froude number = 2.5. Constriction: 15°.

7.5 Drying areas

A special problem encountered in transient, tidal, computations is that of bound-
ary change due to changes of water elevation. This has been ignored in the calcu-
lation presented for the Bristol Channel-Severn Estuary as the movements of the
boundary are reasonably small in the scale analysed. However, in that example
these may be of the order of 1km and in tidal motions near Mont St. Michel,
France, can reach 12km. Clearly on some occasions such movements need to be
considered in the analysis and many different procedures for dealing with the
problem has been suggested. In Fig. 7.13 we show the simplest of these which is
effective if the total movement can be confined to one element size. Here the
boundary nodes are repositioned along the normal direction as required by eleva-
tion changes Arn.

If the variations are larger than those that can be absorbed in a single element some
alternatives can be adopted, such as partial remeshing over layers surrounding the
distorted elements or a general smooth displacement of the mesh.
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Boundary at time t,

-~"Boundary at time t, + At,

Fig. 7.13 Adjustment of boundary due to tidal variation.

7.6 Shallow-water transport

Shallow-water currents are frequently the carrier for some quantities which may
disperse or decay in the process. Typical here is the transport of hot water when
discharged from power stations, or of the sediment load or pollutants. The mechan-
ism of sediment transport is quite complex’! but in principle follows similar rules to
that of the other equations. In all cases it is possible to write depth-averaged transport
equations in which the average velocities U; have been determined independently.

A typical averaged equation can be written — using for instance temperature (7') as
the transported quantity — as

O(T) , O(hUT) D (hk aT

ot ox;  Ox; | ox;

where 4 and U; are the previously defined and computed quantities, k is an
appropriate diffusion coefficient and R is a source term.

A quasi-implicit form of the general CBS algorithm can be obtained when diffusion
terms are included. In this situation practical horizontal viscosity ranges (and
diffusivity in the case of transport equations) can produce limiting time steps much
lower than the convection limit. To circumvent this restraint, a quasi-implicit compu-
tation, requiring an implicit computation of the viscous terms, is recommended.

The application of the CBS method for any scalar transport equation is straight-
forward, because of the absence of the pressure gradient term. Then, the second
and third step of the method are not necessary. The computation of the scalar AT
is analogous to the intermediate momentum computation, but now a new time
integration parameter 6 is introduced for the viscous term such that 0 < 6; < 1.

The application of the characteristic—Galerkin procedure gives the following final
matrix form (neglecting terms higher than second order):

. . AP . .
(M + 6;AD)AT = —Af[CT" + MR"] Tt K, 1"+ £ — ADT" + 61 (7.27)

)—i—R:O fori=1,2 (7.26)
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where now T is the vector of nodal 4T values:
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As an illustration of a real implementation, the parameters involved in the study of
transport of salinity in an industrial application for a river area are considered here.

Time = 9 hours

Time = 36 hours

Fig. 7.14 Heat convection and diffusion in tidal currents.

discharge of hot fluid.

Time = 18 hours

Time = 54 hours

Temperature contours at several times after
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The region studied was approximately 55 kilometres long and the mean value of the
eddy diffusivity was of k = 40ms~'. The limiting time step for convection (consider-
ing eight components of tides) was 3.9 s. This limit was severely reduced to 0.1 s if the
diffusion term was active and solved explicitly. The convective limit was recovered
assuming an implicit solution with 6; = 0.5. The comparisons of diffusion error
between computations with 0.1s and 3.9s had a maximum diffusion error of 3.2%
for the 3.9s calculation, showing enough accuracy for engineering purposes, taking
into account that the time stepping was increased 40 times, reducing dramatically
the cost of computation. This reduction is fundamental when, in practical applica-
tions, the behaviour of the transported quantity must be computed for long-term
periods, as was this problem, where the evolution of the salinity needed to be
calculated for more than 60 periods of equivalent M, tides and for very different
initial conditions.

In Fig. 7.14 we show by way of an example the dispersion of a continuous hot water
discharge in an area of the Severn Estuary. Here we note not only the convection
movement but also the diffusion of the temperature contours.
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Waves

Peter Bettess™

8.1 Introduction and equations

The main developments in this chapter relate to linearized surface waves in water, but
acoustic and electromagnetic waves will also be mentioned. We start from the wave
equation, Eq. (7.23), which was developed from the equations of momentum balance
and mass conservation in shallow water. The wave elevation, 7, is small in comparison
with the water depth, H. If the problem is periodic, we can write the wave elevation, 7,
quite generally as

n(x,», 1) = 7(x,y) exp(iw?) (8.1)

where w is the angular frequency and 7 may be complex. Equation (7.23) now
becomes

2 _ 2
oW 0 on w”
VI HVA) +—=7=0 or <H>+ =0 8.2
(HV1) Pl o, . (82)
or, for constant depth, H,
o7
(9x1~3x,~

Vi 4+ Ki=0  or +7=0 (8.3)
where the wavenumber k = w/+/gH. The wave speed is ¢ = w/k. Equation (8.3) is
the Helmholtz equation (which was also derived in Chapter 7, in a slightly different
form, as Eq. (7.23)) which models very many wave problems. This is only one form
of the equation of surface waves, for which there is a very extensive literature.'
From now on all problems will be taken to be periodic, and the overbar on n will
be dropped. The Helmholtz equation (8.3) also describes periodic acoustic waves.
The wavenumber k is now given by w/c, where as in surface waves w is the angular
frequency and c is the wave speed. This is given by ¢ = 1/ K/p, where p is the density
of the fluid and K is the bulk modulus. Boundary conditions need to be applied to
deal with radiation and absorption of acoustic waves. The first application of finite
elements to acoustics was by Gladwell.” This was followed in 1969 by the solution of

* Professor, Department of Civil Engineering, University of Durham, UK.



Waves in closed domains — finite element models

acoustic equations by Zienkiewicz and Newton,® and further finite element models
by Craggs.” A more comprehensive survey of the development of the method is
given by Astley.8 Provided that the dielectric constant, e, and the permeability, wu,
are constant, then Maxwell’s equations for electromagnetics can be reduced to the
form
e 0 47 ep 0°A drtpd

where p is the charge density, J is the current, and ¢ and A are scalar and vector
potentials, respectively. When p and J are zero, which is a frequent case, and the
time dependence is harmonic, Eqs (8.4) reduce to the Helmholtz equations. More
details are given by Morse and Feshbach.’

For surface waves on water when the wavelength, A = 27/k, is small relative to the
depth, H, the velocities and the velocity potential vary vertically as cosh kz.">!%! The
full equation can now be written as

(8.4)

2 2
T w 0 on w
V' (ccgVn) + ?77 =0 or o, <ccg 8)&) + gn =0 (8.5)
where the group velocity, ¢, = nc, n = (1 + (2kH/sinh 2kH))/2 and the dispersion
relation

w? = gktanh kH (8.6)

links the angular frequency, w, and the water depth, H, to the wavenumber, k.

8.2 Waves in closed domains — finite element models

We now consider a closed domain of any shape. For waves on water this could be
a closed basin, for acoustic or electromagnetic waves it could be a resonant cavity.
In the case of surface waves we consider a two-dimensional basin, with varying
depth. In plan it can be divided into two-dimensional elements, of any of the
types discussed in Volume 1. The wave elevation, 7, at any point (£, 7) within the
element, can be expressed in terms of nodal values, using the element shape function
N, thus

n~f=Nn (8.7)

Next Eq. (8.2) is weighted with the shape function, and integrated by parts in the
usual way, to give

ON _ON 1w’ -
JQ ((%Ha)cj ~N gN) dQi =0 (8.8)

The integral is taken over all the elements of the domain, and 7 represents all the
nodal values of 7.

The natural boundary condition which arises is dn/9n = 0, where n is the normal to
the boundary, corresponding to zero flow normal to the boundary. Physically this
corresponds to a vertical, perfectly reflecting wall. Equation (8.8) can be recast in
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the familiar form

(K- ™)@ =0 (8.9)
where
T1 T
M:J NT-NdQ K:J B'DBdQ (8.10)
Q g Q
D= h 0
10 A

It is thus an eigenvalue problem as discussed in Chapter 17 of Volume 1. The K and M
matrices are analagous to structure stiffness and mass matrices. The eigenvalues will
give the natural frequencies of oscillation of the water in the basin and the eigen-
vectors give the mode shapes of the water surface. Such an analysis was first carried
out using finite elements by Taylor er al.'*> and the results are shown as Fig. 17.5 of
Volume 1. There are analytical solutions for harbours of regular shape and constant
depth.l’3 The reader should find it easy to modify the standard element routine given
in Volume 1, Chapter 20, to generate the wave equation ‘stiffness’ and ‘mass’
matrices. In the corresponding acoustic problems, the eigenvalues give the natural
resonant frequencies and the eigenvectors give the modes of vibration. The model
described above will give good results for harbour and basin resonance problems,
and other problems governed by the Helmholtz equation. In modelling the Helmholtz
equation, it is necessary to retain a mesh which is sufficiently fine to ensure an accurate
solution. A ‘rule of thumb’, which has been used for some time, is that there should be
10 nodes per wavelength. This has been accepted as giving results of acceptable engi-
neering accuracy for many wave problems. However, recently more accurate error
analysis of the Helmholtz equation has been carried out.'*'* In wave problems it is
not sufficient to use a fine mesh only in zones of interest. The entire domain must
be discretized to a suitable element density. There are essentially two types of error:

e The wave shape may not be a good representation of the true wave, that is the local
elevations or pressures may be wrong.
e The wave length may be in error.

This second case causes a poor representation of the wave in one part of the problem
to cause errors in another part of the problem. This effect, where errors build up
across the model, is called a pollution error. It has been implicitly understood since
the early days of modelling of the Helmholtz equation, as can be seen from the
uniform size of finite element used in meshes.

Babuska er al.'>'* show some results for various finite element models, using differ-
ent element types, and the error as a function of element size, s, and wave number, k.
The sharper error results show that the simple rule of thumb given above is not always
adequate. Since the wave number, k, and the wavelength, A, are related by k = 27/,
the condition of 10 nodes per wavelength can be written as kh =~ 0.6. But keeping to
this limit is not sufficient. The pollution error grows as k°h%. Babuska et al. propose
a posteriori error indicators to asssess the pollution error. See the cited references and
Chapter 14, Volume 1, for further discussion of these matters.
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8.3 Difficulties in modelling surface waves

The main defects of the simple surface-wave model described above are the following:

1. inaccuracy when the wave height becomes large. The equations are no longer valid
when 7 becomes large, and for very large 7, the waves will break, which introduces
energy loss.

2. lack of modelling of bed friction. This will be discussed below.

3. lack of modelling of separation at re-entrant corners. At re-entrant corners there is
a singularity in the velocity of the form 1/4/r. The velocities become large, and
physically the viscous effects, neglected above, become important. They cause
retardation, flow separation and eddies. This effect can only be modelled in an
approximate way.

Now the response can be determined for a given excitation frequency, as discussed in
Chapter 17 of Volume 1.

8.4 Bed friction and other effects

The Chézy bed friction term is non-linear and if it is included in its original form it
makes the equations very difficult to solve. The usual procedure is to assume that
its main effect is to damp the system, by absorbing energy, and to introduce a
linear term, which in one period absorbs the same amount of energy as the Chézy
term. The linearized bed friction version of Eq. (8.2) is

2 2
VT(HVn)+w—77—inn:0 or 0 (Hﬁ)—&-w—n—inn:O (8.11)
g Ox; 0x; g
where M is a linearized bed friction coefficient, which can be written as
M = Bupay/ 3nC?H, C is the Chézy constant and u,,, is the maximum velocity at
the bed at that point. In general the results for  will now be complex, and iteration
has to be used, since M depends upon the unknown u,,,,. From the finite element
point of view, there is no longer any need to separate the ‘stiffness’ and ‘mass’
matrices. Instead, Eq. (8.11) is weighted using the element shape function and the
entire complex element matrix is formed. The matrix right-hand side arises from
whatever exciting forces are present. The re-entrant corner effect and wave-absorbing
walls and permeable breakwaters can also be modelled in a similar way, as both of
these introduce a damping effect, due to viscous dissipation. The method is explained
in reference 15, where an example showing flow through a perforated wall in an
offshore structure is solved.

8.5 The short-wave problem

Short-wave diffraction problems are those in which the wavelength is much smaller
than any of the dimensions of the problem. Such problems arise in surface waves
on water, acoustics and pressure waves, electromagnetic waves and elastic waves.
The methods described in this chapter will solve the problems, but the requirement
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of 10 nodes or thereabouts per wavelength, makes the necessary finite element meshes
prohibitively fine. To take one example, radar waves of wavelength 1 mm might
impinge on an aircraft of 10 m wing span. It is easy to see that the computing require-
ments are truly astronomical.

8.5.1 Transient solution of electromagnetic scattering problems

The penalty in using a fine mesh of conventional finite elements in solving wave
problems, referred to above, is the storage and solution of the system matrix. The
approach of Morgan et al.'®" is to treat the problem as transient and not to assemble
and solve the system matrix. The Maxwell equations are

E OH

— =curlH and — = —curlE 8.12

€05, cur an Fo . cur ( )
where E and H are the electric and magnetic field intensity vectors respectively. The
equations are combined and expressed in the conservation form

U N OF

E
= — = h = 1
o 2 o, 0 where U [ } (8.13)

H

and the flux vectors, F, are derived from the curl operators. That is
F'=[0 H, -H, 0 —E; K]
FP=[-H, 0 H E;, 0 —E]" (8.14)
FF=[H, -H 0 —-E E 0]

The algorithm used is the characteristic—Galerkin (or Lax—Wendroff) method as
described in Chapter 2. Details of the algorithm as applied to the electromagnetic prob-
lem are given by Morgan et al. Improved CPU efficiency and reduced storage require-
ments are obtained by the use of a representation in which each edge of the tetrahedral
mesh is numbered and the data structure employed provides the numbers of the two
nodes which are associated with each edge. Because of the massive computations
needed for problems of scattering by short waves, parallel processing has also been
used. The problem of radar scattering by an aircraft is shown in Fig. 8.1(a), and Fig.
8.1(b) (also in colour plate included in Volume 1) shows the radar cross-section
(RCS) obtained for the aircraft using a mesh with about 20 million degrees of freedom.

It would be desirable to simulate radar scattering in the millimetre wavelength range,
however even the above described scheme is computationally too intense at this time.

8.5.2 Finite elements incorporating wave shapes

Another approach is to tailor the shape functions within the elements to the known
nature of the wave solution. The first attempt to do this was the infinite elements of
Bettess and Zienkiewicz.!"'!® The first attempt on finite elements was that of Astley, !>’
using his wave envelope, or complex conjugate weighting method. See Sec. 8.13.
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Fig. 8.1 Scattering of a plane wavelength 2 m by a perfectly conducting aircraft of length 18 m, (a) waves
impacting aircraft, (b) computed distribution of RCS, Morgan."”

Following Astley’s wave envelope technique, Chadwick, Bettess and Laghrouche®
attempted to develop wave envelope finite elements in which the wave direction was
unknown, a priori, and to iterate for the correct wave direction, using some type of
residual. Although this method had some success, the method proposed by Melenk
and Babugka®? appears to be more promising. In this the element shape function
incorporates the wave shape, just as in the Bettess and Zienkiewicz infinite elements
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and the Astley wave envelope elements. However, the innovation of Melenk and
Babuska is that multiple wave directions are used. This is categorized as a form of
the partition of unity finite element method (see Chapter 16 of Volume 1). Melenk
and Babuska demonstrated that if such shape functions are used the method works
for a plane wave propagated through a square mesh of square finite elements, even
when the direction of the wave was not included in the nodal directions. Subsequently
Bettess and Laghrouche applied the method to a range of wave problems, and enjoyed
some success.>**

The starting point is the standard Galerkin weighted residual form of the
Helmholtz equation, which leads to

JQ(—VT W(Vé+kWe)dQ+ L W(V¢)'ndl' =0 (8.15)

The element approximation is now taken as
n m

= N4 (8.16)

j=11=1
where N; are the normal polynomial element shape functions,
¢/ _ eik(xcosﬁﬂrysinﬁ,) (817)

and » is the number of nodes in the element, and m is the number of directions con-
sidered at each node. The shape function consists of a set of plane waves travelling
in different directions, the nodal degrees of freedom corresponding to the amplitudes
of the different waves and the normal polynomial element shape functions allowing a
variation in the amplitude of each wave component within the finite element. The deri-
vatives of the shape and weighting functions can be obtained in the normal way, but
these now also include derivatives of the wave shapes. The new shape function, P;, gives

aP(jfl)er/ %
0x 0x cos 6,
= ikN; 8.18
OP(— 1 on, [ '/{Sinef} K o
dy ady

The global derivatives are obtained in the usual way from the local derivatives, using
the inverse of the jacobian matrix. The element stiffness and mass matrices are

K, :J (Vw)'vpedQ M, :J W, P, dQ (8.19)
Q Q

where r and s are integers which vary over the range of 1,2,. .., (n x m). When calcu-
lating the element matrices, the integrals encountered are of the form

Ijl _ J 1 Jilf(& 77) elk(xcosG/ermn(i/) el/((xcos(i,+ysm9/) df d77 (820)

This integral has to date been performed numerically. But when the waves are short,
many Gauss—Legendre integration points are needed. Typically about 10 integration
points per wavelength are needed. Laghrouche and Bettess solve a range of wave
diffraction problems, including that of plane waves diffracted by a cylinder. The
mesh and the results are shown in Fig. 8.2. As can be seen the results are in good
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Cylinder radius: a = 1 m, radius of the meshed region R/a=7
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Fig. 8.%4 Short waves diffracted by a cylinder, modelled using special finite elements, Laghrouche and
Bettess.
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agreement with the analytical series solution. In this problem ka = 87, A = 0.25a,
radius of cylinder, a =1, and the mesh extends to r = 7a. For a conventional
radial finite element mesh, the requirement of 10 nodes per wavelength would lead
to a mesh with 424160 degrees of freedom. But in the results shown, with 36
directions per node and 252 nodes there are only 9072 degrees of freedom. The
dramatic reduction in the number of variables merits further investigation and
development of the method.

The method still has a number of uncertainties regarding the conditioning of the
system matrix and the stability of the technique and a significant problem remains
in the numerical cost of integrating the element matrix.

8.6 Waves in unbounded domains (exterior surface wave
problems)

Problems in this category include the diffraction and refraction of waves close to
fixed and floating structures, the determination of wave forces and wave response
for offshore structures and vessels, and the determination of wave patterns adjacent
to coastlines, open harbours and breakwaters. In electromagnetics there are
scattering problems of the type already described, and in acoustics we have various
noise problems. In the interior or finite part of the domain, finite elements, exactly
as described in Sec. 8.2 can be used, but special procedures must be adopted for
the part of the domain extending to infinity. The main difficulty is that the problem
has no outer boundary. This necessitates the use of a radiation condition. Such a
condition was introduced in Chapter 19 of Volume 1, as Eq. (19.18), for the
case of a one-dimensional wave, or a normally incident plane wave in two or
more dimensions. Work by Bayliss es al.?*?” has developed a suitable radiation
condition, in the form of an infinite series of operators. The starting point is the
representation of the outgoing wave in the form of an infinite series. Each term
in the series is then annihilated by using a boundary operator. The sequence of
boundary operators thus constitutes the radiation condition. In addition there is
a classical form of the boundary condition for periodic problems, given by
Sommerfeld. A summary of all available radiation conditions is given in Table 8.1.

8.6.1 Background to wave problems

The simplest type of exterior, or unbounded wave problem is that of some exciting
device which sends out waves which do not return. This is termed the radiation
problem. The next type of exterior wave problem is where we have a known incoming
wave which encounters an object, is modified and then again radiates away to infinity.
This case is known as the scattering problem, and is more complicated, in as much as we
have to deal with both incident and radiated waves. Even when both waves are linear,
this can lead to complications. Both the above cases can be complicated by wave refrac-
tion, where the wave speeds change, because of changes in the medium, for example
changes in water depth. Usually this phenomenon leads to changes in the wave direc-
tion. Waves can also reflect from boundaries, both physical and computational.
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Table 8.1 Radiation conditions for exterior wave problems

Dimensions

1 2 3

General boundary conditions

Transient
? 1%20 B,$=0,m— oo B¢ =0,m — oo
X ¢
T /0 0 2j—(3/2) (0 0 2—1
B, = ST W A B = i
" ,1:[1 (81‘+8r+ r " /];[1 atat T,
Periodic
Jdp 109 . (0 .\ . (09 . _
a‘*’za—o /Alin'olo\ﬁ<5+lk6) =0 /AILI’IOIOI 54’1]{(}5 =0
or or
B¢ =0,m— oo B, =0,m— oo
bty or r ey or r
~ Symmetric boundary conditions
Transient
Jdp 10¢ dp ¢ 109 dp ¢ 109
atea=" o tatea =" atrtea ="
Axisymmetric Spherically symmetric
Periodic
do . 09 Loy, dp 1. _
Axisymmetric Spherically symmetric

8.6.2 Wave diffraction

We now consider the problem of an incident wave diffracted by an object. The
problem consists of an object in some medium, which diffracts the incident waves.
We divide the medium as shown in Fig. 8.3, into two regions, with boundaries I 4,
I'p, T'cand T'p.

These boundaries have the following meanings. I, is the boundary of the body
which is diffracting the waves. I'j is the boundary between the two computational
domains, that in which the total wave elevation (or other field variable) is used,
and that in which the elevation of the radiated wave is used. I'- is the outer boundary
of the computational model, and T'j, is the boundary at infinity. Some of these
boundaries may be merged.

A variational treatment will be used, as described in Volume 1, Chapter 3. A
weighted residual treatment is also possible. The elevation of the total wave, 7, is
split into those for incident and radiated waves, n; and nz. Hence ny = n; + ni.
The incident wave elevation, 7;, is assumed to be known. For the surface wave
problem, the functional for the exterior can be written

2
= “ % [ch(Vn)TVn - “’Tcgrf dxdy (8.21)
QO
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I'y Boundary of objects

Fig. 8.3 General wave domains.

where making IT stationary with respect to variations in 7 corresponds to satisfying the
shallow-water wave equation (8.2), with natural boundary condition dn/dn = 0, or
zero velocity normal to the boundary. The functional is rewritten in terms of the
incident and radiated elevations, and then Green’s theorem in the plane (Volume 1,
Appendix G) is applied on the domain exterior to I'3. But the radiation condition
discussed above should be included. In order to do this the variational statement
must be changed so that variations in 7 yield the correct boundary condition. Details
are given by many authors, see for example Bettess.”® After some manipulation the
final functional for the exterior is

2,
IT :JJ 1 [ccg(Vns)TVns _ Y% (775)2] dxdy
0,2 c
A A (8.22)
877[ S 877[ S 1 : . $\2
+ Lh ccq {ax ndy — By n dx] + 5 JF,/ ikeey(n’)”dl’

The influence of the incident wave is thus to generate a ‘forcing term’ on the boundary
I's. For two of the most popular methods for dealing with exterior problems, linking
to boundary integrals and infinite elements, the ‘damping’ term in Eq. (8.22),
corresponding to the radiation condition, is actually irrelevant, because both methods
use functions which automatically satisfy the radiation condition at infinity.

8.6.3 Incident waves, domain integrals and nodal values

It is possible to choose any known solution of the wave equation as the incident wave.
Usually this is a plane monochromatic wave, for which the elevation is given by
1y = ag explikrcos(f — )], where v is the angle that the incident wave makes to the
positive x-axis, r and 6 are the polar coordinates and «, is the incident wave
amplitude. On the boundary I'p, we have two types of variables, the total elevation,
17, on the interior, and 7, the radiation elevation, in the exterior. Clearly the nodal
values of 7 in the finite element model must be unique, and on this boundary, as well
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as the line integral, of Eq. (8.22), we must transform the nodal values, either to ny or
to ng. This can be done simply by enforcing the change of variable, which leads to a
contribution to the ‘right-hand side’ or ‘forcing’ term.

8.7 Unbounded problems

There are several methods of dealing with exterior problems using finite elements in
combination with other methods. Some of these methods are also applicable to finite
differences. The literature in this field has grown enormously in the past 10 years, and
this section will therefore be selective. The monograph by Givoli’ is devoted
exclusively to this field and gives much more detail on the competing algorithms. It
is a very useful source and gives many more algorithms than can be covered here.
The book edited by Geers,*® from an IUTAM symposium, gives a very useful and
up-to-date overview of the field.
The main methods include:

e boundary dampers, both plane and cylindrical (also called non-reflecting bound-
ary conditions);

e linking to exterior solutions, both series and boundary integral (also called Dirich-
let to Neumann mapping);

e infinite elements.

8.8 Boundary dampers

The nomenclature of boundary dampers comes from engineering applications. Such
boundary conditions are also called local non-reflecting boundary conditions by
mathematicians. As was seen in Chapter 19 of Volume 1, we can simply apply the
plane damper at the boundary of the mesh. This was first done in fluid problems
by Zienkiewicz and Newton.® However the more sophisticated dampers proposed
by Baylisss et al.”**” can be used at little extra computational cost and a big increase
in accuracy. The dampers are developed from the series given in Table 8.1. Full details
are given in reference 31. For the case of two-dimensional waves the line integral
which should be applied on the circular boundary of radius r is

_ [ |e,2, B8 ()
Afjr K +2(8s> ]ds (8.23)
where ds is an element of distance along the boundary and
3/4r* — 2k + 3ik/r 1
YT and 0= ok (8:24)

For the plane damper, 8 =0 and « = ik. For the cylindrical damper =0 and
a =ik —1/2r. The corresponding expressions for three-dimensional waves are
different. Non-circular boundaries can be handled but the expressions become
much more complicated. Some results are given by Bando er al.>' Figure 8.4 shows
the waves diffracted by a cylinder problem for which there is a solution, due to
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Fig. 8.4 Damper solutions for waves diffracted by circular cylinder. Comparison of relative errors for various
outer radii, (ka = 1). Relative error = (abs(n,) — abs(n,))/abs(ns).

Havelock. The higher-order dampers are clearly a big improvement over the plane
and cylindrical dampers, for little or no extra computational cost. Engquist and
Majda have also earlier proposed dampers for these problems,32 but instead of
using a hierarchy of operators like Bayliss et al., they use a different method. The
effect is the same, in that a hierarchy of boundary operators is defined, but the
terms are different to those of Bayliss et al.

8.8.1 Other damper-related approaches

A great variety of methods have appeared recently based on dampers, and variants of
the concept. There is not enough space to review them all in detail here and the reader
is referred to the book by Givoli’ and the volume edited by Geers,*® which gives
access to recent developments. The papers in the Geers volume by Bielak, Givoli,
Hagstrom, Hariharan, Higdon, Pinsky and Kallivokas should be consulted. An
interesting development is the method of the perfectly matched layer (PML), or
‘sponge layer’, the idea being that the outgoing wave is not absorbed on a boundary,
but in a domain which extends beyond the boundary. In this domain the wave is
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absorbed or damped in such a way that it does not return into the computational
domain. See the papers by Monk and Collino, Hayder and Driscoll in reference 30.

8.9 Linking to exterior solutions

A general methodology for linking finite elements to exterior solutions was proposed
by Zienkiewicz et al.,**** following various ad hoc developments, and this is also
discussed in Volume 1, particularly in Chapter 13. The exterior solution can take
any form, and those chiefly used are (a) exterior series solutions and (b) exterior
boundary integrals, although others are possible. The two main innovators in these
cases were Berkhoff,'"* for coupling to boundary integrals, and Chen and Mei**’
for coupling to exterior series solutions. Although the methods proposed are quite
different, it is useful to cast them in the same general form. More details of this
procedure are given in reference 33. Basically the energy functional given in
Eq. (8.23) is again used. If the functions used in the exterior automatically satisfy
the wave equation, then the contribution on the boundary reduces to a line integral
of the form
1 on

= 2Jr Urw dr (8.25)
It can be shown'>**** that if the free parameters in the interior and exterior are b and
a respectively, the coupled equations can be written

Gr{or-{0) 529

Ky =4[ [(PN)N,+ N(PNJOT and K= | [Ny (327
T T

K KT
K K

where

In the above P is an operator giving the normal derivative, i.e. P = d/dn, N is the
finite element shape function, N is the exterior shape function, and K corresponds
to the normal finite element matrix. The approach described above can be used
with any suitable form of exterior solution, as we will see. All the nodes on the
boundary become coupled.

8.9.1 Linking to boundary integrals

Berkhoff'%?* adopted the simple expedient of identifying the nodal values of velocity
potential obtained using the boundary integral, with the finite element nodal values.
This leads to a rather clumsy set of equations, part symmetrical, real and banded, and
part unsymmetrical, complex and dense. The direct boundary integral method for the
Helmholtz equation in the exterior leads to a matrix set of equations
- on
An=B P (8.28)
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(The indirect boundary integral method can also be used.) The values of n and dn/dn
on the boundary are next expressed in terms of shape functions, so that

. on  0n on
~fN=N d —r— =M — 8.29
T 1 an on 0On {6‘11 (8.29)
N and M are equivalent to N in the previous section. Using this relation, the integral
for the outer domain can be written as

R .
= 2L CIMTNR T (8.30)

where I is the boundary between the finite elements and the boundary integrals. The
normal derivatives can now be eliminated, using the relation (8.28), and 7 can be
identified with the finite element nodal values, 7, to give

n=m"B'A)" L M'NdTb (8.31)
Variations of this functional with respect to b can be set to zero, to give
o _ 1[5 1 . Tar] Lp - R
—==-4q(B7A) [ M'NdI'+ |(B"'A) | M'NdI'| ;b=Kb (8.32)
ob 2 r r

where K is a ‘stiffness’ matrix for the exterior region. It is symmetric and can be
created and assembled like any other element matrix. The integrations involved
must be carried out with care, as they involve singularities. Results obtained for
the problem of waves refracted by a parabolic shoal are shown in Fig. 8.5.

8.9.2 Linking to series solutions

Chen and Mei**?7 took the series solution for waves in the exterior, and worked out
explicit expressions for the exterior and coupling matrices, K and K, for piecewise
linear shape functions, N, in the finite elements. The series used in the exterior consists
of Hankel and trigonometric functions which automatically satisfy the Helmholtz
equation and the radiation condition:
m
n= ) H;(kr)(a;cosjé + (3 sinjo) (8.33)
j=0

The method described above leads to the following matrices.

[2Hy -+  H,(cosnf, + cosnb,) H,(sinnb, + sinn;) T
2H, ---  H,(cosnf + cosnbs) H, (sinnf,; + sinnf,)
KT — —knL. | 2H) ---  H(cosnf, + cosnb;) H,,(sin nf, + sin nf)
2 .
|2Hy -+ H,(cosnb,_, +cosnf,) H,(sinnf,_, + sinnf,) |

(8.34)
K = mrkh{diag[2H,H, H{H, H{H, --- H.H, H,H]} (8.35)



Fig. 8.5 Refraction—diffraction solution: lines of equal wave height, lines every 0.25 unit.
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where m is the number of terms in the Hankel function series, r is the radius of the
boundary, L, is the distance between the equidistant nodes on I' -, p is the number
of nodes, and H, and H, are Hankel functions and derivatives.

Other authors have worked out the explicit forms of the above matrices for linear
shape functions, and also it is possible to work them out for any type of shape func-
tion, using, if necessary, numerical integration. It will be noticed that the matrix K is
diagonal. This is because the boundary I'p is circular and the Hankel functions are
orthogonal. If a non-circular domain is used, K will become dense. Chen and Mei*
applied the method very successfully to a range of problems, most notably that of
resonance effects in an artificial offshore harbour, the results for which are shown
in Volume 1, Chapter 17, Fig. 17.6.

The method was also utilized by Houston,*® who applied it to a number of real
problems, including resonance in Long Beach harbour, shown in Fig. 8.6.
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Note: Number of node points = 1701
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(a) Finite element grid, grid 3

Fig. 8.6 Finite element mesh and wave height magnification for Long Beach Harbour, Houston.*®
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(b) Contours of wave height ampilification, grid 3. 232-s wave period

Fig. 8.6 Continued.

8.9.3 DtN mapping

The approach described above has been re-invented by recent authors and given the
title Dirichlet to Neumann (DtN) mapping. See a comparison by Astley.*” A detailed
survey of this approach, which goes beyond the wave equation, is given by Givoli.”

8.10 Infinite elements

Infinite elements are described in the book by Bettess,* which although somewhat
out-of-date, still gives a useful introduction to the topic. More recent reviews are
by Astley,*! and Gerdes.*” The methods described in Volume 1, Chapter 9, can be
developed to include periodic effects. This was first done by Bettess and Zienkiewicz,
using so-called ‘decay function’ procedures and they were very effective.!""'® Compar-
ison results with Chen and Mei*®*?’ for the artificial island problem are shown in
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Fig. 17.6 of Volume 1. Later ‘mapped’ infinite elements were developed for wave
problems, and as these are more accurate than those using exponentials, they will
be described here.

8.11 Mapped periodic infinite elements

The theory developed in Volume 1, Chapter 9 for static infinite elements, will not be
repeated here. Details are given in references 28, 39, 43—47. Finite element polyno-
mials of the form

P=op+ o€+ me +... become P=50+%+%+... (8.36)

where 3; can be determined from the «o’s and a. If the polynomial is zero at infinity
then G, = 0.

Many exterior wave problems have solutions in which the wave amplitude decays
radially like 1/r (and higher-order terms) and an advantage of this mapping is that
such a decay can be represented exactly. In some cases, however, the amplitude
decays approximately as 1/4/r, and this case needs a slightly different treatment.
Accuracy can be increased by adding extra terms to the series (8.36).

8.11.1 Introducing the wave component

In two-dimensional exterior domains the solution to the Helmholtz equation can be
described by a series of combined Hankel and trigonometric functions, the simplest
solution to the Helmholtz equation being Hy(kr). For large r the zeroth-order
Hankel function oscillates roughly like cos(kr) + isin(kr), while decaying in magni-
tude as /2. A series of terms 1 /r, 1/ 1%, etc., generated by the mapping, multiplied
by '/ and the periodic component exp(ikr) will be used to model the r 12 decay.
The shape function is thus

N(&n) = M(&n)r'? exp(ikr) (8.37)
where r = A/(1 — £). The shape function in Eq. (8.37) will now be, for compatibility
with the finite elements,

wen=men(2) (1) o) ew(E) 6y

In the improved version of this element,28 the constant, 4, varies within the element.
A is now determined on each radial line from the positions of the nodes. It is inter-
polated between these values. The original mapped infinite element did not include
the possibility of varying the mapping, so that the infinite elements had to be
placed exterior to a sphere. There was also an uncertainty about the integrations in
the infinite radial direction, which was resolved by Astley e al.*’ This arose because
the boundary terms at infinity were incompletely stated, although the element, as
presented in reference 46, is correct. Mapped wave envelope infinite elements were
later developed, using the same methodology, but with a complex conjugate
weighting. Later still Astley es al.,* Cremers and Fyfe and Coyette**° generalized
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Fig. 8.7 Real part of elevations of plane wave diffracted by an ellipse, of aspect ratio 2, Bettess.?®

the mapping of these wave envelope infinite elements, so that it was no longer neces-
sary to place them exterior to a sphere or cylinder. After this work Bettess and
Bettess™® generalized the original mapped wave infinite elements. Figure 8.7 shows
some results from the diffraction of waves by an ellipse, for which there is an analy-
tical solution.

8.12 Ellipsoidal type infinite elements of Burnett and
Holford

Burnett with Holfor proposed a new type of infinite element for exterior
acoustics problems. This uses prolate or oblate spheroidal coordinates, and separates
the radial and angular coordinates. Burnett also further clarified the variational state-
ment of the problem and explained in more detail the terms at the infinite boundary.
It is known that a scattered wave exterior to a sphere can be written in spherical polar
coordinates as

d51—53

7/&)

i (6, “Z” (8.39)

This proof was generalized to the case when the coordinates 6, ¢, r are not simply
spherical, but prolate or oblate spheroidal or ellipsoidal. There are several benefits
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to using such coordinate systems:

e The volume integrals separate into radial and angular parts which can be carried
out independently. This leads to economies in computation.

e The radial integration is identical for every such infinite element, so that the only
integration which needs to be carried out for every infinite element is along the
finite element interface.

e The radial integration is the only part containing the wave number.

e The ellipsoidal coordinates can be used to enclose a large variety of different
geometries in the finite element interior, while still retaining a guarantee of
convergence in 3D.

The angular shape functions are written in the conventional polynomial form. The
radial shape functions take the form

. m.oh..
__—ikr ij
Ni=¢e "y ol (8.40)

Jj=1

The coefficients 4;; are given from the condition of circumferential compatibility
between adjacent infinite elements. There is effectively no difference between this
radial behaviour and that originally proposed in the mapped infinite wave elements
by Bettess et al.***° The difference in the infinite element methodology lies in the
fact that the radial variable, r, is now in ellipsoidal coordinates. Burnett and
Holford®'~** give the necessary detailed information for the element integrations
and the programming of these infinite elements, together with some results. The
analytical expressions are too long to include here. The elements have been used on
submarine fluid—structure interaction problems, and substantial efficiencies over
the use of boundary integral models for the scattered waves have been claimed. In
one case Burnett states that the finite and infinite element model ran for 7 hours on
a workstation. His projected time for the corresponding boundary element model
was about 3000 hours, the infinite elements giving a dramatic improvement!

The Burnett elements have been tested up to very short-wave cases, up to ka = 100
for an elastic sphere diffraction problem, which is shown in Fig. 8.8.

8.13 Wave envelope infinite elements

Astley introduced a new type of finite element, in which the weighting function is the
complex conjugate of the shape function.!”® The great simplification which this
introduces is that the oscillatory function exp(ikr) cancels after being multiplied by
exp(—ikr), and the remaining terms are all polynomials, which can be integrated
using standard techniques, like Gauss—Legendre integration (see Volume 1, Chapter
9). This type of element was originally large (i.e. many wavelengths in extent), but not
infinite. Figure 8.9 shows an example from acoustics, that of acoustical pressure in a
hyperbolic duct. Good results were obtained despite using a relatively coarse mesh.
Astley’s shape function was of the form

Ni(r, 9)% g (8.41)
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Fig. 8.8 Waves scattered by an elastic sphere for ka = 100, Burnett.?

where N; is the standard shape function. The weighting function is thus

Ni(r,6) 2t

(8.42)

Bettess™ showed that for a one-dimensional synthetic wave-type equation the infinite
wave envelope element recovers the exact solution. The element matrix is now
hermitian rather than symmetric (though still complex), which necessitates a small
alteration to the equation solver. (There are not usually any problems in changing
standard profile or front solvers to deal with complex systems of equations.)
Unfortunately the problem tackled by Bettess did not include the essential feature
of physical waves, in two and three dimensions. Later workers applied the wave
envelope concept to true wave problems. In this case it can be shown that if the
weighting function is simply the complex conjugate of the shape function, terms
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Fig. 8.9 Computed acoustical pressure contours for a hyperbolic duct ( = 70°, ka = 11, m, = 8). Conven-
tional and wave envelope element solutions, Astley.”’

arise on the boundary at infinity.t This is discussed by Bettess.*’ The terms can be
evaluated, but they are not symmetrical (or hermitian), and therefore impose a
change of solution technique. An alternative, which eliminates the terms at infinity,
was proposed by Astley et al® In this a ‘geometrical factor’ is included in the
weighting function, which then takes the form

Ni(r, ) (r?)  gik(r=r) (8.43)
It has been shown that this form of weighting functions gives very good results. Such
wave envelope infinite elements have been further developed by Coyette, Cremers and
Fyfe.*> These elements have incorporated a more general mapping than that in the
original Zienkiewicz et al. mapped infinite wave element. Cremers and Fyfe allow the
mapping to vary in the local £ and 7 directions.

8.14 Accuracy of infinite elements

The use of a complex conjugate weighting in the wave envelope infinite elements means
that the original variational statement, Eq. (8.22), must be changed to allow the use of
the different weighting function. This gives rise to a number of issues relating to the
nature of the weighted residual statement and the existence of various terms. These
issues were touched on by Bettess,”” but have been subsequently subjected to more
detailed study. Gerdes and Demkowitz,>>® analysed the wave envelope elements,
and subsequently the wave infinite elements.”’ Some of this work is restricted to

T Some writers, particularly mathematicians, prefer to call the usual wave infinite elements, unconjugated
infinite elements, and the Astley type wave envelope infinite elements, conjugated infinite elements.
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spherical scatterers. Other analysis is carried out by Shirron and Babuska,”®> who

reveal a somewhat paradoxical result. The usual infinite elements give better results
in the finite element mesh, but worse results in the infinite elements themselves. But
the wave envelope elements give worse results in the finite elements, and better results
in the far field. This result, which is ascribed to ill-conditioning, does seem to be
counterintuitive. Astley*' and Gerdes* have also surveyed current formulations and
accuracies.

8.15 Transient problems

Recently Astley®® has extended his wave envelope infinite elements, using the pro-
late and oblate spheroidal coordinates adopted by Burnett and Holford,’ =53 and has
shown that they give accurate solutions to a range of periodic wave problems. With
the geometric factor of Astley, which reduces the weighting function and eliminates
the surface integrals at infinity, the stiffness, K, damping, C, and mass M matrices
of the wave envelope infinite element become well defined and frequency independent,
although unsymmetric. This makes it possible to apply such elements to unbounded
transient wave problems. Figure 8.10 shows the transient response of a dipole.

More results from the application of infinite elements to transient problems are
given by Cipolla and Butler,* who created a transient version of the Burnett infinite
element. There appear to be more difficulties with such elements than with the wave
envelope elements, and a consensus that the latter are better for transient problems
seems to be emerging. Dampers and boundary integrals can also be used for transient
problems. Space is not available to survey these fields, but the reader is directed,
again, to Givoli” and Geers.”® One set of interesting results was obtained using
transient dampers by Thompson and Pinsky.®

1.5

Dimensionless acoustic pressure
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Dimensionless time T (= tD/c)

Fig. 8.10 Transient response of a dipole, Astley.®®
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8.16 Three-dimensional effects in surface waves

As has already been described, when the water is deep in comparison with the
wavelength, the shallow-water theory is no longer adequate. For constant or slowly
varying depth, Berkhoff’s theory is applicable. Also the geometry of the problem
may necessitate another approach. The flow in the body of water is completely
determined by the conservation of mass, which in the case of incompressible flow
reduces to Laplace’s equation. The free surface condition is zero pressure. On using
Bernoulli’s equation and the kinematic condition, the free surface condition can be
expressed, in terms of the velocity potential, ¢, as

26
ot

2
s + g% +2(Ve)T [V(

or "o >] +3(V9)'V[(V9) 'V =0 (8.44)

where the velocities are u; = d¢/0x;. This condition is applied on the free surface,
whose position is unknown a priori. If only linear terms are retained, Eq. (8.44)
becomes, for transient and periodic problems

2
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0 or R 10) (8.45)
which is known as the Cauchy—Poisson free surface condition. It was derived in
terms of pressure in Volume 1, Chapter 19 as Eq. (19.13). Three-dimensional
finite elements can be used to solve such problems. The actual three-dimensional
element is very simple, being a potential element of the type described in Volume
1 Chapter 7. The natural boundary condition is d¢/dn = 0, where n is the outward
normal, so to apply the free surface condition it is only necessary to add a surface
integral to generate the w’ /g term from the Cauchy—Poisson condition (see Eq.
(19.13) of Volume 1). Two-dimensional elements in the far field can be linked to
three-dimensional elements in the near field around the object of interest. Such
models will predict velocity potentials, pressures throughout the fluid, and wave
elevations. They can also be used to predict fluid—structure interaction. All the
necessary equations are given in Volume 1 Chapter 19. More details of fluid—struc-
ture interactions of this type are given by Zienkiewicz and Bettess.®® Essentially the
fluid equations must be solved for incident waves, and for motion of the floating
body in each of its degrees of freedom (usually six). The resulting fluid forces,
masses, stiffnesses and damping are used in the equations of motion of the structure
to determine its response. Figure 8.11 shows some results obtained by Hara et al.®’
using the WAVE program, for a floating breakwater. They obtained good agree-
ment between the infinite elements and the methods of Sec. 8.9.

8.16.1 Large-amplitude water waves

There is no complete wave theory which deals with the case when 7 is not small
in comparison with the other dimensions of the problem. Various special theories
are invoked for different circumstances. We consider two of these, namely, large
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wave elevations in shallow water and large wave elevations in intermediate to deep
water. We have discussed a similar problem in Chapter 5.

8.16.2 Cnoidal and solitary waves

The equations modelled in Chapter 7 can deal with large-amplitude waves in
shallow water. These are called cnoidal waves when periodic, and solitary waves
when the period is infinite. For more details see references 1-4. The finite element
methodology of Chapter 7, can be used to model the propagation of such waves.
It is also possible to reduce the equations of momentum balance and mass conser-
vation to corresponding wave equations in one variable, of which there are several
different forms. One famous equation is the Korteweg—de Vries equation, which in
physical variables is

an 3\ on i rn
5+ x/gH(l + 2h> e \/gHax3 =0 (8.46)

This equation has been given a great deal of attention by mathematicians. It can be
solved directly using finite element methods, and a general introduction to this field
is given by Mitchell and Schoombie.®®

8.16.3 Stokes waves

When the water is deep, a different asymptotic expansion can be used in which the
velocity potential, ¢, and the surface elevation, 7, are expanded in terms of a small
parameter, ¢, which can be identified with the slope of the water surface. When
these expressions are substituted into the free surface condition, and terms with the
same order in € are collected, a series of free surface conditions is obtained. The
equations were solved by Stokes initially, and then by other workers, to very high
orders, to give solutions for large-amplitude progressive waves in deep water.
There is an extensive literature on these solutions, and they are used in the offshore
industry for calculating loads on offshore structures. In recent years, attempts have
been made to model the second-order wave diffraction problem, using finite elements,
and similar techniques. The first-order diffraction problem is as described in Sec. 8.9.
In the second-order problem, the free surface condition now involves the first-order
potential.

First order:

) 2
52 _ w?(b(l) —0 (8.47)
A
Second order:
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00 _ W40 _ 4@ (8.48)
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The second-order boundary condition can be thought of as identical to the first-order
problem, but with a specified pressure applied over the entire free surface, of value a.
Now there is no a priori reason why such a pressure distribution should give rise to
outgoing waves as in the first-order problem, and so the usual radiation condition
is not applicable. The conventional procedure is to split the second-order wave into
two parts, one the ‘locked’ wave, in phase with the first-order wave, and the other
the ‘free’ wave, which is like the first-order wave but at twice the frequency, and
with an appropriate wavenumber obtained from the dispersion relation. For further
details of the theory, see Clark e al.*’ Figure 8.12 shows results for the second-order
wave elevation around a circular cylinder, obtained by Clark et al. Although not
shown, good agreement has been obtained with predictions made by boundary

@ 9
Real {np/(H</4a)}

Incident
wave

. @,
Imaginary {np/(H</4a)}

Fig. 8.12 Second order wave elevations around cylinder — real and imaginary parts Clark er al.%®
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integrals. Preliminary results, for wave forces only, have also been produced by Lau
et al.” A much finer finite element mesh is needed to resolve the details of the waves at
second order. The second-order wave forces can be very significant for realistic values
of the wave parameters (those encountered in the North Sea for example). The first-
order problem is solved first and the first-order potential is used to generate the for-
cing terms in Eqs (8.50) and (8.51). These values have to be very accurate. In principle
the method could be extended to third and higher orders, but in practice the difficul-
ties multifly, and in particular the dispersion relation changes and the waves become
unstable.
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Computer implementation of the
CBS algorithm

P. Nithiarasu®

9.1 Introduction

In this chapter we shall consider some essential steps in the computer implementation
of the CBS algorithm on structured or unstructured finite element grids. Only linear
triangular elements will be used and the notes given here are intended for a two-
dimensional version of the program. The sample program listing and user manual
along with several solved problems are available to down load from the publisher’s
web site http://www.bh.com/companions/fem free of charge.

The program discussed can be used to solve the following different categories of
fluid mechanics problems:

1. Compressible viscous and inviscid flow problems
2. Incompressible viscous and inviscid flows

3. Incompressible flows with heat transfer

4. Porous media flows

5. Shallow-water problems.

With further simple modifications, many other problems such as turbulent flows,
solidification, mass transfer, free surfaces, etc. can be solved. The procedures
presented here are largely based on the computer implementation discussed in
Chapter 20, Volume 1 of this book. Many programming aspects will not be discussed
here in detail and the reader is referred back to Chapter 20, Volume 1. Here it is
assumed that the reader is familiar with FORTRAN!? and finite element procedures
discussed in this volume as well as in Volume 1.}

We call the present program CBSflow since it is based on the CBS algorithm discussed
in Chapter 3 of this volume. We prefer to keep the compressible and incompressible flow
codes separate to avoid any confusion. However an experienced programmer can
incorporate both parts into a single code without much memory loss. Each program list-
ing is accompanied by some model problems which helps the reader to validate the
codes. In addition to the model inputs to programs, a complete user manual is available
to users explaining every part of the program in detail. Any error reported by readers
will be corrected and the program will be continuously updated by the authors.

* Research Fellow, Department of Civil Engineering, University of Wales, Swansea, UK.
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The modules are constructed essentially as in Chapter 20, Volume 1 starting with
(1) the data input module with preprocessing and continuing with (2) the solution
module and (3) the output module. However, unlike the generalized program of
Chapter 20, Volume 1, the program CBSflow only contains the listing for solving
transient Navier—Stokes (or Euler—Stokes) equations iteratively. Here there are
many possibilities such as fully explicit forms, semi-implicit forms, quasi-implicit
forms and fully implicit forms as discussed in Chapter 3 of this volume. We concen-
trate mainly on the first two forms which require small memory and simple solution
procedures compared to other forms.

In both the compressible and incompressible flow codes, only non-dimensional
equations are used. The reader is referred to the appropriate chapters of this
volume (Chapters 3, 4 and 5) for different non-dimensional parameters.

In Sec. 9.2 we shall describe the essential features of data input to the program.
Here cither structured or unstructured meshes can be used to divide the problem
domain into finite elements. Section 9.3 explains how the steps of the CBS algorithm
are implemented. In that section, we briefly remark on the options available for shock
capturing, various methods of time stepping and different procedures for equation
solving. In Sec. 9.4, the output generated by the program and postprocessing
procedures are considered. In the last section (Sec. 9.5) we shall consider the
possibility of further extension of CBSflow to other problems such as mass transfer,
turbulent flow, etc.

9.2 The data input module

This part of the program is the starting point of the calculation where the input data
for the solution module are prepared. Here an appropriate input file is opened and the
data are read from it. Unlike in Chapter 20, Volume 1, we have no mesh generator
coupled with CBSflow. However an advancing front unstructured mesh generator
and some structured mesh generators are provided separately. By suitable coupling,
the reader can implement various adaptive procedures as discussed in Chapters 4 and
5. Either structured or unstructured mesh data can be given as input to the program.
The general program structure and many more details can be found in Chapter 20,
Volume 1.

9.2.1 Mesh data - nodal coordinates and connectivity

Once the nodal coordinates and connectivity of a finite element mesh are available
from a mesh generator, they are allotted to appropriate arrays (for a detailed descrip-
tion on the mesh, numbering etc., see Chapter 20, Volume 1). Essentially the same
arrays as described in Chapter 20, Volume 1 are used here. The coordinates are
allotted to X (i,j) with i defining the appropriate cartesian coordinates x;(i = 1)
and x,(i = 2) and j defining the global node number. Similarly the connectivity is
allotted to an array IX(k,/). Here k is the local node number and / is the global
element number. It should be noted that the material code normally used in heat
conduction and stress analysis is not necessary.
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Table 9.1 Non-dimensional parameters

Non-dimensional number Symbol Flow types

Conductivity ratio k* Porous media flows

Darcy number Da Porous media flows

Mach number M Compressible flows

Prandtl number Pr Compressible, incompressible, thermal and
porous media flows

Porosity € Porous media flows

Rayleigh number Ra Natural convective flows

Reynolds number Re Compressible, incompressible, thermal and
porous media flows

Viscosity ratio v Porous media flows

If the structured meshes and banded solution are preferred by the user, a flag
activated by the user calculates the half-bandwidth of the mesh and supplies it to
the solution module. Alternatively, a diagonally preconditioned conjugate gradient
solver can be used with an appropriate flag. These solvers are necessary only when
the semi-implicit form of solution is used.

9.2.2 Boundary data

In general, the procedure discussed in Chapter 20, Volume 1 uses the boundary nodes
to prescribe boundary conditions. However, in CBSflow we mostly use the edges to
store the information on boundary conditions. Some situations require boundary
nodes (e.g. pressure specified in a single node) and in such cases corresponding
node numbers are supplied to the solution module.

9.2.3 Other necessary data and flags

In addition to the mesh data and boundary information, the user needs to input a few
more parameters used in flow calculations. For example, compressible flow
computations need the values of non-dimensional parameters such as the Mach
number, Reynolds number, Prandtl number, etc. Here the reader may consult the
non-dimensional equations and parameters discussed in Sec. 3.1, Chapter 3, and in
Chapter 5, of this volume. The necessary parameters for different problems are
listed in Table 9.1 for completeness.

Several flags for boundary conditions, shock capture, etc. need to be given as
inputs. For a complete list of such flags, the reader is referred to the user manual
and program listing at the publisher’s web page.

9.2.4 Preliminary subroutines and checks

A few preliminary subroutines are called before the start of the time iteration loop.
Establishing the surface normals, element area calculation (for direct integration),
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SUBROUTINE GETNRW(MXPOI,MBC,NPOIN,NBS,ISIDE,IFLAG,
C0SX,COSY, ALEN, IWPOIN,WNOR,NWALL)

IMPLICIT NONE

INTEGER I,I1B,IB2,IN,IW,J,JJ,MBC,MXPOI,NBS,NN,NPOIN,NWALL
INTEGER IFLAG(MXPOI), ISIDE(4,MBC), IWPOIN(3,MBC)

REAL*8 ACH, ANCR, ANX1,ANY1

REAL*8 ALEN (MBC) ,COSX (MBC) ,COSY (MBC) WNOR(2,MBC)

DO I = 1,NPOIN
IFLAG (I) =0

END DO ! I

DO I =1, NBS
D0 J=1,3

IWPOIN(J,I) = 0

END DO ! J

END DO ! I

NWALL

]
o

DO IN = 1,2
DO I =1, NBS ! boundary sides.

flags on the wall points

IF(ISIDE(4,I).EQ.2)THEN ! flag 2 for solid walls.
NN = ISIDE(IN,I)
JJ = IFLAG(NN)
IF(JJ.EQ.O) THEN
NWALL
IWPOIN(I,NWALL)
IWPOIN(2,NWALL)
IFLAG(NN)
ELSE
IWPOIN(3,JJ)
ENDIF
ENDIF
END DO ! I
END DO ! IN

NWALL + 1
NN

I

NWALL

]
H

DO IW = 1, NWALL

IB = IWPOIN(2,IW)
IB2 = IWPOIN(3,IW)
ANX1 = ALEN(IB)*COSX(IB)
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ANY1 = ALEN(IB)*COSY(IB)
ACH = 0.0D00
IF(IB2.NE.O) THEN

ANX1 = ANX1 + ALEN(IB2)*COSX(IB2)
ANY1 = ANY1 + ALEN(IB2)*COSY(IB2)
ACH = COSX(IB)+*COSX(IB2) + COSY(IB)*COSY(IB2)
ENDIF
ANOR = DSQRT(ANX1*ANX1 + ANY1*ANY1)
ANX1 = ANX1/ANOR
ANY1 = ANY1/ANOR
WNOR(1,IW) = ANX1
WNOR(2,IW) = ANY1
IF(ACH.LT.-0.2) THEN
WNOR(1,IW) = 0.0DOO
WNOR(2,IW) = 0.0DOO
WRITE(*,*)IWPOIN(1,IW),’ is trailing edge’ ! e.g. aerofoil.
ENDIF
END DO ! IW

END

Fig. 9.1 Subroutine calculating surface normals on the walls.

mass matrix calculation and lumping and some allocation subroutines are necessary
before starting the time loop. The routine for establishing the surface normals is
shown in Fig. 9.1. On sharp, narrow corners as at the trailing edge of an aerofoil,
the boundary contributions are made zero by assigning a zero value for the surface
normal as shown.

9.3 Solution module

Figure 9.2 shows the general flow diagram of CBSflow. As seen, the data from the
input module are passed to the time loop and here several subprograms are used to
solve the steps of the CBS algorithm. It should be noted that the semi-implicit
form is used here only for incompressible flows and at the second step we only
calculate pressure, as the density variation is here assumed negligible.

9.3.1 Time loop

The time iteration is carried out over the steps of the CBS algorithm and over many
other subroutines such as the local time step and shock capture calculations. As men-
tioned in the flow chart, the energy can be calculated after the velocity correction.
However, for a fully explicit form of solution, the energy equation can be solved in
step 1 along with the intermediate momentum variable. Further details on different
steps are given in Sec. 9.3.4 and the reader can refer to the theory discussed in Chapter
3 of this volume for a comprehensive review of the CBS algorithm.
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9.3.2 Time step

In general, three different ways of establishing the time steps are possible. In problems
where only the steady state is of importance, so-called ‘local time stepping’ is used
(see Sec. 3.3.4, Chapter 3). Here a local time step at each and every nodal points is
calculated and used in the computation.

When we seek accurate transient solution of any problem, the so-called ‘minimum
step’ value is used. Here the minimum of all local time step values is calculated and
used in the computation.

Another and less frequently used option is that of giving a ‘fixed’ user-prescribed
time step value. Selection of such a quantity needs considerable experience from
solving several flow problems.

The times loop starts with a subroutine where the above-mentioned time step
options are available. In general the local time steps are calculated at every iteration
for the initial few time steps and then they are calculated only after a certain number
of iterations as prescribed by the user. If the last option of the user-specified fixed time
step is used, the local time steps are not calculated. Figure 9.3 shows the subroutine
used for calculating the local time steps for inviscid compressible flows with linear
triangular elements.

As indicated in Sec. 4.3.3, Chapter 4, two different time steps are often useful in
getting better stabilization procedures.* Such internal (DELTI) and external (DELTP)
time stepping options are available in the routine of Fig. 9.3.

9.3.3 Shock capture

The CBS algorithm introduces naturally some terms to stabilize the oscillations
generated by the convective acceleration. However, for compressible high-speed
flows, these terms are not sufficient to suppress the oscillations in the vicinity of
shocks and some additional artificial viscosity terms need to be added (see Sec. 6.5,
Chapter 6). We have given two different forms of artificial viscosities based on the
second derivative of pressure in the program. Another possibility is to use anisotropic
shock capturing based on the residual of individual equations solved. However we
have not used the second alternative in the program as the second derivative based
procedures give quite satisfactory results for all high-speed flow problems.

In the first method implemented, we need to calculate a pressure switch (see Eq.
(6.16), Chapter 6) from the nodal pressure values. Figure 9.4 gives a typical example
of triangular elements inside and on the boundaries. For inside nodes (Fig. 9.4(a)) we
calculate the nodal switch as

S - |4p1 — P2 — p3 — ps — s ©.1)
|p1 = P2l + |p1 = p3l + |p1 — pal + [Py — ps|

and for the boundary node (Fig. 9.4(b)) we calculate

. |5p1 = 2p> = p3 = 2p4]
2[p1 — pal + |p1 — 3| + 2| p1 — 4l




SUBROUTINE
&
&

Solution module

TIMSTP (MXPOI,MXELE,NELEM,NPOIN,IALOT, IX, SFACT,
DTFIX,UNKNO,DELTP,DELTI,SONIC,PRES,GAMMA,
GEOME, X, NMAX,MAXCON,MODEL, NODEL)

c calculates the critical local time steps at nodes.

c calculates internal and external time steps.

c
IMPLICIT

IMPLICIT
PARAMETER (

INTEGER
INTEGER

INTEGER

REAL*8
REAL*8

REAL*8
REAL*8
REAL*8

NONE

MPOI
MPOI=9000)

I,IALOT,IE,IP,IP1,IP2,IP3,MODEL,MXELE,MXPOI
NELEM, NODEL ,NPOIN

IX (MODEL,MXELE) ,MAXCON (20,MIXP0OI) ,NMAX (MXPOI)

ALEN, ANX, ANY,CMAX, DTFIX, DTP, GAMMA, SFACT,TSTI
TSTP,U,U1,02,U3,V,V1,V2,V3,VN1,VN2,VN3,VELN, VSUM

DELTI(MXPOI) ,DELTP(MXPOI), GEOME(7,MXELE)
PRES (MXPOI), SONIC(MXPOI), UNKNO(4,MXPOI)
X(2,MXP0OI)

REAL*8 PRS(MPOI) ,RHO(MPOI) ,VMAG(MPOI),VNORM(MPOI) ! local arrays

IF(IALOT.EQ.-1)THEN
CALL TIMFIL(MXPOI,DELTP,NPOIN,DTFIX)
CALL TIMFIL(MXPOI,DELTI,NPOIN,DTFIX)

RETURN
ENDIF
c

c smoothing the variables

C

DO I =1, NPOIN
VNORM(I) = 0.00D+00
RHO(I) = 0.00D+00
PRS(I) = 0.00D+00
U = UNKNO(2,I)/UNKNO(1,I)
v = UNKNO(3,I)/UNKNO(1,I)
VMAG(I) = DSQRT (Uk*2+V**2)
DO IP = 1,NMAX(I)
IP1 = MAXCON(IP,I)
VNORM(I) = VNORM(I) + VMAG(IP1)
PRS(I) = PRS(I) + PRES(IP1)
RHO(I) = RHO(I) + UNKNO(1,IP1)
END DO ! IP

Fig. 9.3 Subroutine

for time step calculation.
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VNORM(I) = VNORM(I)/FLOAT(NMAX(I))
PRS(I) = PRS(I)/FLOAT(NMAX(I))
RHO(I) = RHO(I)/FLOAT(NMAX(I))
SONIC(I) = DSQRT(GAMMA*PRS(I)/RHO(I))
END DO ! I
DO IP = 1,NPOIN
DELTP(IP) = 1.0d06
SONIC(IP) = DSQRT(GAMMA*PRES(IP)/UNKNO(1,IP)) ! speed of sound
END DO ! IP

c
c loop for calculation of local time steps
c

DO IE = 1, NELEM

IP1 = IX(1,IE)

IP2 = IX(2,IE) ! connectivity

IP3 = IX(3,IE)

Ul = UNKNO(2,IP1)/UNKNO(1,IP1) ! ul velocity

Vi = UNKNO(3,IP1)/UNKNO(1,IP1) ! u2 velocity

U2 = UNKNO(2,IP2)/UNKNO(1,IP2)

V2 = UNKNO(3,IP2)/UNKNO(1,IP2)

U3 = UNKNO(2,IP3)/UNKNO(1,IP3)

V3 = UNKNO(3,IP3)/UNKNO(1,IP3)

VN1 = DSQRT (U1**2 + U1l**2)

VN2 = DSQRT (U2%*2 + U2*%*2)

VN3 = DSQRT (U3**2 + U3*%*2)

VELN = MAX(VN1, VN2, VN3)

CMAX = MAX(SONIC(IP1), SONIC(IP2), SONIC(IP3))

VSUM = VELN + CMAX
C

ANX = GEOME(1,IE) ! shape function derivatives

ANY = GEOME(4,IE)

ALEN = 1.0/DSQRT(ANX*#*2 + ANY**2) ! element length at node 1

TSTP = ALEN/VSUM

TSTI = ALEN/VELN

DELTP(IP1) = MIN(DELTP(IP1), TSTP) ! external time step

DELTI(IP1) = MIN(DELTI(IP1), TSTI) ! internal time step
c

ANX = GEOME(2,IE)

ANY = GEOME(5, IE)

ALEN = 1.0/DSQRT (ANX**2 + ANY**2)

TSTP = ALEN/VSUM

TSTI = ALEN/VELN

DELTP(IP2) = MIN(DELTP(IP2), TSTP)
DELTI(IP1) = MIN(DELTI(IP1), TSTI)

Fig. 9.3 Continued.



Solution module

ANX = GEOME(3,IE)

ANY = GEOME(6, IE)

ALEN = 1.0/DSQRT (ANX**2 + ANY*%2)
TSTP = ALEN/VSUM

TSTI = ALEN/VELN

DELTP(IP3) = MIN(DELTP(IP3), TSTP)
DELTI(IP1) = MIN(DELTI(IP1), TSTI)
END DO ! IE

DO IP = 1, NPOIN
DELTP(IP) = SFACT#DELTP(IP) ! SFACT - safety factor

END DO ! IP
IF(IALOT.EQ.O) THEN
DTP = 1.0d+06

DO IP = 1,NPOIN
DTP = MIN(DTP, DELTP(IP))
END DO ! IP
CALL TIMFIL(MXPOI,DELTP,NPOIN,DTP)
ENDIF
END

Fig. 9.3 Continued.

The nodal quantities calculated in a manner explained above are averaged over
elements and used in the relations of Eq. (6.17), Chapter 6. Figure 9.5 shows the
calculation of the nodal pressure switches for linear triangular elements.

In the next option available in the code, the second derivative of pressure is
calculated from the smoothed nodal pressure gradients (see Sec. 4.5.1, Chapter 4)
by averaging. Other approximations to the second derivative of pressure are described

5

(a) (b)

Fig. 9.4 Typical element patches (a) interior node (b) boundary node.
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in Sec. 4.5.1, Chapter 4. The user can employ those methods to approximate the
second derivative of pressure if desired.

9.3.4 CBS algorithm. Steps

Various steps involved in the CBS algorithm are described in detail in Chapter 3.
There are three essential steps in the CBS algorithm (Fig. 9.2). First, an intermediate
momentum variable is calculated and in the second step the density/pressure field is
determined. The third step involves the introduction of density/pressure fields to
obtain the correct momentum variables. In problems where the energy and other
variables are coupled, calculation of energy is necessary in addition to the above
three steps. In fully explicit form, however, the energy equation can be solved in
the first step itself along with the intermediate momentum calculations.

In the subroutine stepl we calculate the temperature-dependent viscosity at the
beginning according to Sutherland’s relation (see Chapter 6). The averaged viscosity
values over each element are used in the diffusion terms of the momentum equation
and dissipation terms of the energy equation. The diffusion, convective and stabiliza-
tion terms are integrated over elements and assembled appropriately to the RHS
vector. The integration is carried out either directly or numerically. Finally the
RHS vector is divided by the lumped mass matrices and the values of intermediate
momentum variables are established.

In step two, in explicit form, the density/pressure values are calculated by the
Eq. (3.53) (or Eq. (3.54)). The subroutine step2 is used for this purpose. Here the
option of using different values of #; and 6, is available. In explicit form 6, is
identically equal to zero and 6, varies between 0.5 and 1.0. For compressible flow
computations, the semi-implicit form with 8, greater than zero has little advantage
over the fully explicit form. For this reason we have not given the semi-implicit
form for compressible flow problems in the program.

For incompressible flow problems, in general the semi-implicit form is used. In this
0,, as before, varies between 0.5 and 1 and 6, is also in the same range. Now it is
essential to solve the pressure equation in step2 of the algorithm. Here in general
we use a conjugate gradient solver as the coefficient matrix is not necessarily banded.

The third step is the one where the intermediate momentum variables are corrected
to get the real values of the intermediate momentum. In all three steps, mass matrices
are lumped if the fully explicit form of the algorithm is used. As mentioned in earlier
chapters, this is the best way to accelerate the steady-state solution along with local
time stepping. However, in problems where transient solutions are of importance,
either a mass matrix correction as given in Sec. 2.6.3, Chapter 2 or simultaneous
solution using a consistent mass matrix is necessary.

9.3.5 Boundary conditions

As explained before, the boundary edges are stored along with the elements to which
they belong. Also in the same array iside(i, j) the flags necessary to inform the



C

c this subroutine

Solution module

SUBROUTINE SWITCH(MXPOI, MXELE, MBC, NPOIN, NELEM, NBS, PRES,
CSHOCK,PSWTH, IX ,DELUN, ISIDE,MODEL, ITYPE)

¢ maximum value 1

C

IMPLICIT

INTEGER
INTEGER

INTEGER

REAL*8
REAL*8

REAL*8

DO IELEM =1,

IP1
IP2

IP3

PS1

PS2

PS3

PADD

P11

P22

P33
PSWTH(IP1)
PSWTH(IP2)
PSWTH(IP3)
DELUN(IP1)
DELUN (IP2)
DELUN (IP3)

calculates the pressure switch at each node

and minimum value O

NO

NE

IB,IELEM,IP,IP1,IP2,IP3,ITYPE,MBC,MODEL
MXELE,MXPOI,NBS, NELEM, NPOIN

ISIDE(4,MBC) ,IX(MODEL,MXELE)

CSHOCK, PADD, P11, P22, P33,PS1,PS2,PS3

XP

S,XPD

DELUN (MXPOI) ,PRES (MXPOI) ,PSWTH(MXPOI)

NE

END DO ! IELEM
DO IB = 1,NBS

IP1
IP2
PS1
PS2
XPS
XPD
PSWTH(IP1)
PSWTH(IP2)
DELUN(IP1)
DELUN(IP2)

LEM
IX(1,IELEM)
1X(2,IELEM)
I1X(3,IELEM)
PRES(IP1)
PRES (IP2)
PRES(IP3)
PS1+PS2+PS3
(3.0d00%*PS1
(3.0d00*PS2
(3.0d00*PS3
PSWTH(IP1)
PSWTH(IP2)
PSWTH(IP3)
DELUN(IP1)
DELUN (IP2)
DELUN (IP3)

+ + + + 4+ o+

ISIDE(1,IB)
ISIDE(2,IB)
PRES(IP1)
PRES (IP2)
PS1 + PS2
PS1 - PS2
PSWTH(IP1) +
PSWTH(IP2)
DELUN(IP1) +
DELUN(IP2) +

- PADD)

- PADD)

- PADD)

P11

P22

P33

DABS(PS1 - PS2) + DABS(PS1 - PS3)
DABS(PS1 - PS2) + DABS(PS2 - PS3)
DABS(PS3 - PS2) + DABS(PS1 - PS3)

XPD
XPD

DABS (XPD)
DABS (XPD)
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END DO ! IB
DO IP = 1,NPOIN

IF(DELUN(IP) .LT.0.1+PRES(IP))DELUN(IP) = PRES(IP)
END DO ! IP
DO IP = 1,NPOIN

PSWTH(IP) = CSHOCK+*DABS (PSWTH(IP))/DELUN(IP)
END DO ! IP
END

Fig. 9.5 Calculation of nodal pressure switches for shock capturing.

solution module which type of boundary conditions are stored. In this array i = 1,2
correspond to the node numbers of any boundary side of an element, i = 3 indicates
the element to which the particular edge belongs and i =4 is the flag which
indicates the type of boundary condition (a complete list is given in the user manual
available at the publisher’s web page). Here j is the boundary edge number. A typical
routine for prescribing the symmetry conditions is shown in Fig. 9.6.

9.3.6 Solution of simultaneous equations - semi-implicit form

The simultaneous equations need to be solved for the semi-implicit form of the CBS
algorithm. Two types of solvers are provided. The first one is a banded solver which is
effective when structured meshes are used. For this the half-bandwidth is necessary in
order to proceed further. The second solver is a diagonal preconditioned conjugate
gradient solver. The latter can be used to solve both structured and unstructured
meshes. The details of procedures for solving simultaneous equations can be found
in Chapter 20 of Volume 1.

9.3.7 Different forms of energy equation

In compressible flow computations only the fully conservative form of all equations
ensures correct position of shocks. Thus in the compressible flow code, the energy
equation is solved in its conservative form with the variable being the energy.
However for incompressible flow computations, the energy equation can be written
in terms of the temperature variable and the dissipation terms can be neglected. In
general for compressible flows, Eq. (3.61) is used, and Eq. (4.6) is used for incom-
pressible flow problems.

9.3.8 Thermal and porous media flows

As mentioned earlier the heat transfer and porous medium flows are also included
in the incompressible flow code. Using the heat transfer part of the code, the user
can solve forced, natural and mixed convection problems. Appropriate flags and



Solution module

SUBROUTINE SYMMET(MXPOI, MBC, NPOIN, NBS, UNKNO,ISIDE,RHOINF,
& UINF,VINF, COSX,COSY)

symmetric boundary conditions forced. one component of velocity
forced to zero

o o0 o o0

IMPLICIT NONE

INTEGER I,IpP,J,MBC,MXPOI,NBS,NPOIN

INTEGER ISIDE(4,MBC)

REAL*8 ANX, ANY,RHOINF,UINF,US,VINF

REAL*8 COSX(MBC), COSY(MBC), UNKNO(4,MXPOI)

DO I =1, NBS
IF(ISIDE(4,I).EQ.4)THEN ! symmetry flag 4
ANX = COSX(I)

ANY = COSY(I)
D0 J =1,2
IP
Us
UNKNO(2,IP)
UNKNO(3,IP)
END DO ! J
ENDIF
END DO ! I
END

ISIDE(J,I)
—~UNKNO(2,IP)*ANY + UNKNO(3,IP)*ANX
- US*ANY

US*ANX

Fig. 9.6 Subroutine to impose symmetry conditions.

non-dimensional parameters need to be given as input. For the detailed discussion on
these flows, the reader is referred to Chapter 5 of this volume.

9.3.9 Convergence

The residuals (difference between the current and previous time step values of
parameters) of all equations are checked at every few user-prescribed number of itera-
tions. If the required convergence (steady state) is achieved, the program stops
automatically. The aimed residual value is prescribed by the user. The program
calculates the maximum residual of each variable over the domain. The user can
use them to fix the required accuracy. We give the routine used for this purpose in
Fig. 9.7.
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SUBROUTINE RESID(MXPOI,NPOIN,ITIME,UNKNO,UNPRE,PRES,PRESN,IFLOW)

(e]

purpose :

IMPLICIT

INTEGER

REAL*8
REAL*8

REAL*8
REAL*8

EMAX1
EMAX2
EMAX3
EMAX4

DOI =1,
ERR1 =
ERR2 =
ERR3 =
ERR4 =
ER1 =
ER2 =
ER3 =
ER4 =
IF (ER1

EMAX1
ICON1
ENDIF
IF (ER2
EMAX2
ICON2
ENDIF
IF (ER3
EMAX3
ICON3
ENDIF
IF (ER4
EMAX4
ICON4
ENDIF
END DO !
END

calculations of residuals.

NONE

I,ICON1,ICON2,ICON3,ICON4,IFLOW,ITIME,MXPOI,NPOIN

EMAX1,EMAX2,EMAX3,EMAX4,ERR1,ERR2,ERR3,ERR4,ER1
ER2,ER3,ER4

PRES (MXPOI) , PRESN (MXPOI) , UNKNQ (4, MXPOI)
UNPRE (4, MXPOI)

NPOIN
UNKNO(1,I)
UNKNO(2,1I)
UNKNO(3,I)
UNKNO(4,1)
DABS(ERR1)
DABS (ERR2)
DABS (ERR3)
DABS (ERR4)
.GT.EMAX1)
ER1

I

.GT .EMAX2)
= ER2
I

.GT.EMAX3)
= ER3
=1

.GT.EMAX4)
= ER4
I

I

0.000d00
0.000d00
0.000d00
= 0.000d400

UNPRE(1,1I)
UNPRE(2,1)
UNPRE(3,1)
UNPRE(4,1)

THEN

THEN

THEN

THEN

Fig. 9.7 Subroutine to check convergence rate.

! density or pressure

ul velocity or mass flux

! u2 velocity or mass flux
! energy or temperature



References

9.4 Output module

If the imposed convergence criteria are satisfied then the output is written into a
separate file. The user can modify the output according to the requirements of post-
processor employed. Here we recommend the education software developed by
CIMNE (GiD) for post and preprocessing of data.’ The facilities in GiD include
two- and three-dimensional mesh generation and visualization.

9.4.1 Stream function calculation

The stream function value is calculated from the following equation:

Py Y ou v
Py Py _ou_ oo o
Ox;  Ox; Ox, Ox
This equation is derived from the definition of stream function in terms of the velocity
components. We again use the finite element method to solve the above equation.

9.5 Possible extensions to CBSflow

As mentioned earlier, there are several possibilities for extending this code. A simple
subroutine similar to the temperature equation can be incorporated to solve mass
transport. Here another variable ‘concentration’ needs to be solved.®

Another subject which can be incorporated and studied is that of a ‘free surface’
given in Chapter 5 of this volume. Here another equation needs to be solved for
the surface waves.’

The phase change problems need appropriate changes in the energy equation.
The liquid, solid and mushy regions can be accounted for in the equations by simple
modifications. The latent heat also needs to be included in phase change problems.

The turbulent flow requires solution of another set or sets of equations similar to
the momentum or energy equations as explained in Chapter 5. For the k—e model
the reader is referred to reference 13.

The program CBSflow is an educational code which can be modified to suit the
needs of the user. For instance, the modification of this program to incorporate a
‘command language’ could make the code very efficient and compact.

8§—12
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Appendix A

Non-conservative form of
Navier—Stokes equations

To derive the Navier—Stokes equations in their non-conservative form, we start with
the conservative form.

Conservation of mass:

dp  Opu;) _Op = Ou dp
o Tox, o Pax, gy 0 (A1)

Conservation of momentum:

A(pu;) +8(u,-pui) _Omy;  Op
ot Ox ox; 0Ox;

J J

=0 (A.2)

Conservation of energy:

d(pE) O(uwpE) 0 oT I(up)  O(7;u;)
: — k = ——— = A3
ar oy, om\ox ) T oy, oy (A-3)
Rewriting the momentum equation with terms differentiated as
814, Op Ou; Op ou; Oty Op
—— = A4
P T (aﬁ T >+ P A (A4)

and substituting the equation of mass conservation (Eq. A.1) into the above equation
gives the reduced momentum equation
%_'_ jau, laT,j_i_lap
ot ox; pox;  pOx;

0 (A.5)

Similarly as above, the energy equation (Eq. A.3) can be written with differentiated
terms as
Jp Ou; dp OE OE 0 oT
E Lt u— — |k
(aﬁ Pox, "oy, ) TP T ey, o o,

Xj
O(u;p) a(leu])
ax,‘ Bx,-

=0 (A.6)



292 Appendix A

Again substituting the continuity equation into the above equation, we have the
reduced form of the energy equation
== Z __
ot ox; pox; \| Ox;

(A7)

p Ox p Ox;

Some authors use Egs. (A.1), (A.5) and (A.7) to study compressible flow problems.
However these non-conservative equations can result in multiple or incorrect solutions
in certain cases. This is true especially for high-speed compressible flow problems with
shocks. The reader should note that such non-conservative equations are not suitable
for simulation of compressible flow problems.



Appendix B

Discontinuous Galerkin methods
in the solution of the
convection—diffusion equation”

In Volume 1 of this book we have already mentioned the words ‘discontinuous
Galerkin’ in the context of transient calculations. In such problems the discontinuity
was introduced in the interpolation of the function in the time domain and some
computational gain was achieved.

In a similar way in Chapter 13 of Volume 1, we have discussed methods which have
a similar discontinuity by considering appropriate approximations in separate
element domains linked by the introduction of Lagrangian multipliers or other
procedures on the interface to ensure continuity. Such Aybrid methods are indeed
the precursors of the discontinuous Galerkin method as applied recently to fluid
mechanics.

In the context of fluid mechanics the advantages of applying the discontinuous
Galerkin method are:

e the achievement of complete flux conservation for each element or cell in which the
approximation is made;

e the possibility of using higher-order interpolations and thus achieving high
accuracy for suitable problems;

e the method appears to suppress oscillations which occur with convective terms
simply by avoiding a prescription of Dirichlet boundary conditions at the flow
exit; this is a feature which we observed to be important in Chapter 2.

To introduce the procedure we consider a model of the steady-state convection—
diffusion problem in one dimension of the form

¢ d <k(x)d¢> =/ O<x<L (B.1)

“ dx dx dx

where u is the convection velocity, k = k(x) the diffusion (conduction) coefficient
(always bounded and positive), and f = f(x) the source term. We add boundary
conditions to Eq. (B.1); for example,

¢(L)=¢  and  k(0)

=g (B.2)

*J.T. Oden, personal communication, 1999.
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As usual the domain Q = (0,L) is partitioned into a collection of N elements

(intervals) Q, = (x,_1,X.),e = 1,2,...,m. In the present case, we consider the special
weak form of Egs (B.1) and (B.2) defined on this mesh by

B (oS )ars (oot (o

(kj“)am—v( )0+ wut0)

m Xe d _ _
- ZJ fodx + k(D)6 -+ v(0)g — w(0)6 (B.3)
for arbitrary weight functions v. Here (.) denotes (flux) averages
<k'l)/>(.xg) —_ kv,(x€+) ; k'l),(ng) (B4)
and [.] denote jumps
[1(xe) = P(xes) — Plxe-) (B.5)

it being understood that x,, = lim._ ¢(x, £ ¢), v = dv/dx etc.
The particular structure of the weak statement in Eq. (B.3) is significant. We make
the following observations concerning it:

1. If ¢ = ¢(x)istheexact solution of Eqs (B.1) and (B.2), then it is also the (one and only)
solution of Eq. (B.3); i.e. Eqs (B.1) and (B.2) imply the problem given by Eq. (B.3).

2. The solution of Eqs (B.1) and (B.2) satisfies Eq. (B.3) because ¢ is continuous and
the fluxes k d¢/dx are continuous:

6l(x) =0  and <kjj‘c>< )=0 (B.6)

3. The Dirichlet boundary conditions (an inflow condition) enter the weak form on
the left-hand side, an uncommon property, but one that permits discontinuous
weight functions at relevant boundaries.

4. The signs of the second term on the left side (> {(kv'[¢]) — (k¢')[v]}) can be
changed without affecting the equivalence of Eq. (B.3) and Eqs (B.1) and (B.2),
but the particular choice of signs indicated turns out to be crucial to the stability
of the discontinuous Galerkin method (DGM).

5. We can consider the conditions of continuity of the solution and of the fluxes at
interelement boundaries, conditions (B.6), as constraints on the true solution.
Had we used Lagrange multipliers to enforce these constraints then, instead of
the second sum on the left-hand side of Eq. (B.3), we would have terms like

m

Z{A | + pik dp dx) }(x.) (B.7)

where A and p are the multipliers. A simple calculation shows that the multipliers
can be identified as average fluxes and interface jumps:

A= (K =l (B3)
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Introducing Eq. (B.8) into Eq. (B.7) gives the second term on the left hand side of
Eq. (B.3). Incidently, had we constructed independent approximations of A and p,
a setting for the construction of a hybrid finite element approximation of Eq. (B.1)
and Eq. (B.2) would be obtained (see Chapter 13, Volume 1).

We are now ready to construct the approximation of Eqgs (B.1) and (B.2) by the
DGM. Returning to Eq. (B.3), we introduce over each element {2, a polynomial
approximation of ¢;

Pe
¢~ d=> daNi(x) (B.9)
k=0
where the «f are undetermined constants and N} = x* are monomials (shape
functions) of degree k each associated only with €2,. Introducing Eq. (B.9) into
(B.3) and using, for example, complete polynomials N, of degree p, for weight func-
tions in each element, we arrive at the discrete system

e e

e=1k=0

T R o)

N e
=3[0 s kS84 eNi0) —uON 015

e=17%

e—1

j=12

)

yees Doy, €=1,2....m (B.10)

This is the DGM approximation of Eq. (B.3). Some properties of Eq. (B.10) are
noteworthy:

1. The shape functions Nj need not be the usual nodal based functions; there are no
nodes in this formulation. We can take Nf to be any monomial we please (represent-
ing, for example, complete polynomials up to degree p, for each element €2, and
even orthogonal polynomials). The unknowns are the coefficients @ which are
not necessarily the values of ¢ at any point.

2. We can use different polynomial degrees in each element (2,; thus Eq. (B.10)
provides a natural setting for Ap-version finite element approximations.

3. Suppose u =0. Then the operator in Eq. (B.1) is symmetric. Even so, the
formulation in Eq. (B.10) leads to an unsymmetric stiffness matrix owing to the
presence of the jump terms and averages on the element interfaces. However, it
can be shown that the resulting matrix is always positive definite, the choice of
signs in the boundary and interface terms being critical for preserving this
property.

4. In general, the formulation in Eq. (B.10) involves more degrees of freedom than
the conventional continuous (conforming) Galerkin approximation of Eqgs (B.1)
and (B.2) owing to the fact that the usual dependencies produced in enforcing
continuity across element interfaces are now not present. However, the very
localized nature of the discontinuous approximations contributes to the surprising
robustness of the DGM.
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5. While the piecewise polynomial basis {Nll7 ...,Np,...,N{,...,N, } contains
complete polynomials from degree zero up to p = pmin, p,, numerical experi-
ments indicate that stability demands p > 2, in general.

6. The DGM is elementwise conservative while the standard finite element approxi-
mation is conservative only in element patches. In particular, for any element 2,
we always have

. d 71 Xe

J fdx+k—¢ =0 (B.11)

Q, d

Xe—1

This property holds for arbitrarily high-order approximations p,.

The DGM is robust and essentially free of the global spurious oscillations of
continuous Galerkin approximations when applied to convection—diffusion
problems.

We now consider the solution to a convection—diffusion problem with a turning
point in the middle of the domain. The Hemker problem is given as follows:

o do

2 .
— = — 1
kdx2 +ag km” cos(mx) — mx sin(mx) on [0,1]

with ¢(—1) = =2, ¢(1) = 0. Exact solution for above shows a discontinuity of
d(x) = cos(mx) + erf(x/v/2k) Jerf(1/v/2k)

Figures B.l and B.2 show the solutions to the above problem (k= 10""" and
h=1/10) obtained with the continuous and discontinuous Galerkin method,
respectively. Extension to two and three dimensions is discussed in references given
in Chapter 2.

25

2.0

1.5

1.0

0.5

-1.0 -0.6 -0.2 0 0.2 0.6 1.0

Fig. B1. Continuous Galerkin approximation.
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2.5

-1.0 -0.6 -0.2 0 0.2 0.6 1.0

Fig. B2. Discontinuous Galerkin approximation.
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Edge-based finite element
formulation

The edge-based data structure has been used in many recent finite element formula-
tions for flow problems. As mentioned in Sec. 6.8, Chapter 6, this formulation has
many advantages such as smaller storage, etc. To explain the formulation we shall
consider the Euler equations and a few assembled linear triangular elements on a
two-dimensional finite element mesh as shown in Fig. C.1. From Eq. (1.24) we rewrite
the following Euler equations

0® OF,

— 4 —

ot 6x,~
where ® are the conservative variables. If the element-based formulation for the
above equation omits the stabilization terms, the weak form can be written as

0 (C.1)

Ad OF;
N==da=—| (NHTZdq C.2

Jsz At Jsz( ) Ox; (€2)
In a fully explicit form of solution procedure, the left-hand side becomes M(A®/A¢)
and here M is the consistent mass matrix (see Chapter 3). We can write the RHS of
the above equation for an interior node 7 (Fig. C.1(a)) by interpolating F; in each
element and after applying Green’s theorem as

1
ZJ WZ(Nka)dQ:Z{?%Z’} (F! + F/ +FK) (C3)
Ecrd4e Y Ect i lE

where A is the area and 7, J and K are the three nodes of the element (triangle) E.
This is an acceptable added approximation which is frequently used in the Taylor—
Galerkin method (see Chapter 2). In another form, the above RHS can be written
as (Fig. C.1(a))

Ay ON;

— F,+F +F —= F,+F,+F —=

3 8xi( (T F+F)+ 3 8x,»( (T F+F) + 3 ox;

where 4, A, and A5 are the areas of elements 1, 2 and 3 respectively. For integra-
tion over the boundary on the RHS, we can write the following in the element
formulation

A, ON; A; ON;

(F;+F;+F) (C4)

: I
ZJ N (NFS) dTng = 3 [;<2F{+F{)n] (.5)
BerJls Bel B
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(a) (b)

Fig. C.1 Typical patch of linear triangular elements: (a) inside node; (b) boundary node.

where n is the boundary normal. The above equation can be rewritten for the node /
in Fig. C.1(b) as
r r
%(2F{ +F)n, +%(2F{ +F))n, (C.6)
where I'p; and I'p, are appropriate edge lengths.
The above equations (C.3) and (C.5) can be reformulated for an edge-based data
structure. In such a procedure, Eq. (C.3) can be rewritten as (for an interior node /)

ONT NFFE) g2 — Z { > {Af %Z{L(F’( +Ff“)} (C.7)

EelJ“E 0x; s=1 \Ee1l,

where m1, is the number of edges in the mesh which are directly connected to the node
I and the summation ) . extends over those elements that contain the edges /1.
The user can readily verify that the above equation is identically equal to the standard
element formulation of Eq. (C.4) if we consider the node / in Fig. C.1(a). The
inclusion of boundary sides is direct from Eqs (C.5) and (C.6).
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Multigrid methods

It is intuitively obvious that whenever iterative techniques are used to solve a finite
element or finite difference problem it is useful to start from a coarse mesh solution
and then to use this coarse mesh solution as a starting point for iteration in a finer
mesh. This process repeated on many meshes has been used frequently and obviously
accelerates the total convergence rate. This acceleration is particularly important
when a hierarchical formulation of the problem is used. We have indeed discussed
such hierarchical formulations in Chapter 8 of the first volume and the advantages
are pointed out there.

The simple process which we have just described involves going from coarser
meshes to finer ones. However it is not useful if no return to the coarser mesh is
done. In hierarchical solutions such returning is possible as the coarser mesh
matrix is embedded in the finer one with the same variables and indeed the iteration
process can be described entirely in terms of the fine mesh solution. The same idea is
applied to the multigrid form of iteration in which the coarse and fine mesh solution
are suitably linked and use is made of the fact that the fine mesh iteration converges
very rapidly in eliminating the higher frequencies of error while the coarse mesh
solution is important in eliminating the low frequencies.

To describe the process let us consider the problem of

Lé=f in Q (D.1)

which we discretize incorporating the boundary conditions suitably. On a coarse
mesh the discretization results in

K¢ =f° (D.2)

which can be solved directly or iteratively and generally will converge quite rapidly if
¢° is not a big vector. The fine mesh discretization is written in the form

K¢/ =1 (D.3)
and we shall start the iteration after the solution has been obtained on the coarse
mesh. Here we generally use a prolongation operator which is generally an interpola-

tion from which the fine mesh values at all nodal points are described in terms of the
coarse mesh values. Thus

o) =Pdi_| + Ad) (D.4)



Appendix D 301

where A(I)-lf- is the increment obtained in direct iteration. If the meshes are nesting then
of course the matter of obtaining P is fairly simple but this can be done quite generally
by interpolating from a coarser to a finer mesh even if the points are not coincident.
Obviously the values of the matrices P will be close to unity whenever the fine mesh
points lie close to the coarse mesh ones. This leads to an almost hierarchical form.
Once the prolongation to (I)f has been established at a particular iteration i the fine
mesh solutions can be attempted by solving

K'A¢ =t —R/ (D.5)

where the residual R is easily evaluated from the actual equations. We note that the
solution need not be complete and can well proceed for a limited number of cycles
after which a return to the coarse mesh is again made to cancel out major low-
frequency errors. At this stage it is necessary to introduce a matrix Q which trans-
forms values from the fine mesh to the coarse mesh. We now write for instance

o = Qe (D.6)
where one choice for Q is, of course, P'. In a similar way we can also write
R = QR/ (D.7)

where R; are residuals. The above interpolation of residuals is by no means obvious
but is intuitively at least correct and the process is self-checking as now we shall start a
coarse mesh solution written as

K(¢ir1 — ¢i) =R} (D.8)
At this stage we solve for J),‘ 11 using the values of previous iterations of (i)f and
putting the collected residuals on the right-hand side. This way of transferring resi-
duals is by no means unique but has established itself well and the process is rapidly
convergent.

In general more than two mesh subdivisions will be used and suitable operators P
and Q have to be established for transition between each of the stages. The total
process of solution is vastly accelerated and proceeds well as shown by the many
papers cited in Chapter 6.
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Boundary layer—inviscid
flow coupling

A few references on the topic of boundary layer—inviscid flow coupling are given in

Chapter 6. In this appendix we shall briefly explain a simple procedure of this flow

coupling procedure. To understand the process of coupling the Euler and integral

boundary solutions we shall consider a typical flow pattern around a wing as

shown in Fig. E.1. Both turbulent and laminar regimes are shown in this figure.
We summarize the procedure as follows.

Step 1 Solve the Euler equations in the domain considered around the aerofoil. Here
any mesh can be used independently of the mesh used for the boundary layer solution.
The solution thus obtained will give a pressure distribution on the surface of the wing.

Step 2 Solve the boundary layer using an integral approach over an independently
generated surface mesh. If the surface nodes do not coincide with the Euler mesh, the
pressure needs to be interpolated to couple the two solutions. The laminar portion
near the boundary (Fig. E.1) is calculated by the “Thwaites compressible’ method and
the turbulent region is predicted by the ‘lag-entrainment’ integral boundary layer model.

Step 3 The Euler and integral solutions are coupled by transferring the outputs from
one solution to the other. As indicated in Fig. E.1, direct and semi-inverse couplings

Semi-inverse

Turbulent

bl // \\ - ) S .
S, L Sem
< \ » re. "Nverse
Q: Laminar _Jransition , A
! amina Turbulent , SN
\\ /I ~—
/'/*‘\‘\"“""“"--)'4 """""" T iinverse \“'"“),’(‘
&° Direct : Sem! PN
@O o® : My

Fig. E1. Flow past an aerofoil. Typical problem for boundary layer—inviscid flow coupling.
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Unstructured grids
or multiblock Euler C
3> inviscid method

p:S

Direct calculation

(A, )

Lag-entrainment
boundary layer

viscous method <
$,6,Ci, H
Direct calculation
(a)
Unstructured grids
or multiblock Euler Cp.s
> inviscid method
Direct calculation
Y
PVN m+1 mo L. edu,  edu]™
> PVN' =PV *K L*vg—jvg}

Lag-entrainment
boundary layer
viscous method

4

Vy > 8

Direct calculation

(b)

Fig. E2. Coupling techniques: (a) direct; (b) semi-inverse.

can be used for different regions. The semi-inverse coupling is introduced here mainly
to stabilize the solution in the turbulent region close to separation. Figure E.2 shows
the flow diagrams for the present boundary layer—inviscid coupling.

Further details on the Thwaites compressible method and semi-inverse coupling
can be found in the references discussed in Sec. 6.12, Chapter 6 (Le Balleur and
coworkers).
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In Fig. E.2, C, is the coefficient of pressure; s the coordinate along the surface; 6
the boundary layer thickness; 6 the momentum thickness; C, the skin friction
coefficient; H the velocity profile shape parameter; p the density; Vy the trans-
piration velocity; K* is a factor developed from stability analysis; the subscript v
marks the viscous boundary layer region; 6" the displacement thickness; the
superscript i indicates inviscid region and the superscript m indicates the current
iteration.

Following are useful relations for some of the above quantities:

0 Poldy T 27’

where 7 is the normal direction from the wing surface.
We have the following equations to be solved in the integral boundary layer lag-
entrainment model.

Continuity
dH dH Cy 0 du,
—_—=— -H|L—-(H+1)— E.2
eds dH{CE 1(2 (H + )uv ds)} (E2)
Momentum
de ¢ 5 0 du,
—=—=—(H4+2-M")— E.3
ds 2 (H+ )ul ds (E.3)
Lag-entrainment
dc, 2.8 0.5 0.5 0 du,
) L 5 . b du,
0 ds [H—i—Hl ((CT>EQ° AG )+ u, ds Jgq
6 du, 5 (140.2M%)
-— 1+0075M°) ————+ E.4
u, ds (1+ )(l +0.1M2) (E-4)
where F is a function of C, and C; and given as
, 08C,
0.02C, + C; + 3
F= E.5
(0.01+C,) (E3)
In the above equations, H and H, are the velocity profile shape parameters defined as
_ (> u 5—06"
H=- 1—— H, = E.
ih (=) m=5 (E6)

C, is the entrainment coefficient; u, the mean component of the streamwise velocity at
the edge of the boundary layer; M the Mach number; C, the shear stress coefficient;
A the scaling factor on the dissipation length; the subscripts EQ and EQ, denote
respectively the equilibrium conditions and equilibrium conditions in the absence
of secondary influences on the turbulence structure.
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Once the above equations are solved, the transpiration velocity V) is calculated as
shown in Fig. E.2 and is added to the standard Euler boundary conditions on the wall
and plays the role of a surface source. The coupling continues until convergence. In
practice, in one coupling cycle, several Euler iterations are carried out for each
boundary layer solution.
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Convected coordinates, 124
Convected shape function, 37
Convection, 4, 8

buoyancy driven, 161

forced, 144, 286

heat, 238

mixed, 286

natural, 155, 158, 286

naturally occurring, 144

pure, 29, 45

Rayleigh—Bernard, 156
Convection dominated problems, 13
Convection equation, pure, 146
Convection velocity, 293
Convection—diffusion equation, 4, 13, 25, 26, 44,

47,72,92, 293

Convective acceleration, 1, 65
Convective diffusion, 34, 36
Convective forces, 55
Convective motion, 157
Convective term, 14, 96
Convergence, 97, 188, 287-289, 300
Coordinates:

cartesian, 275

convected, 124

ellipsoidal, 261, 262

nodal, 275

oblate spheroidal, 261

prolate spheroidal, 261

spherical polar, 261
Coriolis accelerations, 221
Coriolis forces, 229
Coriolis parameter, 221
Corners, re-entrant, 245
Correction:

mass matrix, 284

momentum, 279
Coupling:

energy, 279

semi-inverse, 303

thermal, 11, 125

viscous-inviscid, 210, 211
Courant Number, 42, 97
Criteria, convergence, 289
Critical flows, super, 235
Critical stable upwind parameter, 20
Critical time step, 224
Cross-waves, 235
Cross-wind diffusion, 29
Current, 243
Currents:

density-induced, 11

longshore, 235

rip, 235

tidal, 238
Curvature based refinement, 102

Curvature of the streamlines, 110
Curvatures, 107
maximum principle, 108
minimum, 109
Cylinder:
circular, 269
full, 185

Dam break, 224, 226
Damper:
cylindrical, 253
Damper-related approaches, 254
Dampers:
boundary, 253
cylindrical, 253
higher-order, 254
plan, 253
transient, 265
Damping term, 252
Damping, optimal, 78
Darcy Number, 160, 161, 276
DARPA submarine model, 149, 152
Dassault, 189
Data input, 275
Data, mesh, 275
Decay function procedures, 259
Decomposition, Riemann, 233
Decoupled equations, 58
Deep drawing, 122, 129
Deep water, 268
Delaunay triangulation, 109
Delta:
Kronecker, 5, 65
Density, 3, 7, 91, 92, 154, 170, 304
charge, 243
fluid, 6
Density contours, 86, 203
Density variation, 278
Density-induced currents, 11
Density—pressure equation, 73
Density/pressure fields, 284
Depth:
total, 220
water, 242, 243
Depth-averaged continuity, 221
Depth-averaged governing equations, 220
Depth-averaged transport equations, 237
Derivatives, second, 107
Desert, Nevada, 193
Design, aircraft, 192
Deviatoric strain, 5, 71, 72
Deviatoric stress, 1, 5, 65, 71, 72, 92
DGM, 295
Diagonal matrix, 58, 72
Diagonal preconditioned conjugate gradient,
286



Diagonal term:

lower, 80

stabilizing, 78
Die geometry, 130
Dielectric constant, 243
Diffraction, 250, 251

elastic sphere, 262

ellipse, 261

wave, 248, 250
Diffraction problem, first-order, 268
Diffusion, 4, 238

artificial, 22

balance, 20, 22, 27

convective, 34, 36

cross-wind, 29

highly anisotropic, 28

Lapidus-type artificial, 179

negative, 22

stabilizing, 39

streamline balancing, 28
Diffusion coefficient, 14, 237

artificial, 175
Diffusion conduction coefficient, 293
Diffusion error, 239
Diffusion terms, 25, 38, 237
Diffusive flux quantities, 14
Diffusive terms, 50

viscous, 76
Diffusivity:

artificial, 50, 224

thermal, 154
Dirichlet boundary conditions, 293, 294
Dirichlet to Neumann (DtN) mapping, 253
Discharge of hot fluid, 238, 239
Discontinuity, 50

sharp, 181
Discontinuous Galerkin, 26, 293
Discretization:

mixed, 116

penalty, 116

spatial, 70
Dispersal, pollutant, 218, 227
Dispersion relation, 243, 269, 271
Displacement thickness, 304
Dissipation:

artificial, 174

energy, 8

frictional, 228

internal work, 123

viscous, 245
Dissipation terms, 286
Distribution:

gaussian, 46

pressure, 211
Domain integrals, 252
Domain subdivision, unstructured, 2

Subject index

Domains, general wave, 252
Doubile ellipsoid, 207, 208
Drag stresses, bottom, 222
Drag:

viscous, 146

wind, 221
Drawing:

deep, 122, 129
Drift angle, 150
Driven cavity problem, 115
Driven convection, buoyancy, 161
Driven flows:

buoyancy, 153, 156
Driving force, 154
Drying areas, 236
DtN algorithm, 253, 259
Duct, hyperbolic, 262
DYNA3D, 132
Dynamic codes, explicit, 132
Dynamic equilibrium, 6
Dynamic shear viscosity, 5
Dynamic viscosity, 66, 156

Ebbing, 231
Eddies, 161, 245
Eddy shedding, 3
Eddy viscosity, turbulent, 162
Edge formulation, 212
Edge:
trailing, 150
Edge-based finite element formulation, 298
Eigenvalue analysis, 58, 244
Eigenvectors, 244
Elastic behaviour, 2
Elastic bulk modulus, 11
Elastic compressibility, 132
Elastic recovery, 132
Elastic solids, incompressible, 66
Elastic sphere diffraction, 262
Elastic waves, 245
Elasticity, incompressible, 113
Electric field intensity vectors, 246
Electromagnetic scattering problems, 246
Electromagnetic wave problems, 57
Electromagnetic waves, 4, 242, 243, 245
Electromagnetics, 243, 250
(See also finite element)
Elements:
Burnett, 262
conjugated infinite, 264
elongated, 197
finite, 2
infinite, 252, 259, 265
linear triangular, 283
quadrilateral, 206, 207
special finite, 249
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Elements — cont. Burger, 50, 52
static infinite, 260 continuity, 99
structured triangle, 206 convection—diffusion, 4, 26, 47, 293
tetrahedral, 206 density-pressure, 73
triangle, 207, 274 energy, 74, 286, 289
unconjugated infinite, 264 energy conservation, 3
Element area calculation, 276 Euler, 9, 176, 177
Element elongation, 107, 108, 109 heat transport, 153
Element formulation, edge-based finite, 298 Helmbholtz, 223, 242, 243, 244, 248, 255
Element grids, structured finite, 274 Korteweg—de Vries, 268
Element size, smallest, 181 Laplace, 96, 265, 266
Element stretching, 182 momentum, 154
infinite, 262 Navier—Stokes, 9
potential, 265, 266 Poisson, 97
Elements grids, unstructured finite, 274 pure convection, 146
Elementwise conservative, 296 scalar convection—diffusion, 92
Elevation: self-adjoint, 96
second-order wave, 269 transport, 14, 163
total wave, 251 wave, 242
wave, 242, 243 Equations:
Elevations: averaged flow, 162
tidal, 226 convection—diffusion, 13, 25, 72
wave, 265, 266 decoupled, 58
Ellipse diffraction, 261 depth-averaged governing, 220, 237
Ellipsoid: energy, 91
double, 207, 208 Euler, 8, 10, 93, 150, 171, 172, 218, 298,
Ellipsoidal coordinates, 261, 262 302
Ellipsoidal type infinite elements, 261 Euler—Stokes, 275
Elongated elements, 197 Maxwell, 243, 246
Elongation directions, 180 Navier—Stokes, 10, 26, 146, 150, 170, 180, 197,
Elongation: 210, 212, 219, 291
element, 107-109 non-conservative, 9
Energy, 159, 170, 284 non-self-adjoint, 1
balance of, 8 potential flow, 146
conservation of, 66, 92, 291 shallow-water, 223
internal, 170 Stokes, 81
kinetic, 121 transient scalar, 34
specific, 92, 94 transport, 171
turbulent kinetic, 162 wave, 268
Energy conservation, 7, 65, 124 Equations of motion, 153
Energy conservation equation, 3 Equilibrium conditions, 304
Energy coupling, 279 Equilibrium, dynamic, 6
Energy dissipation, 8 Ergun’s relations, 159
Energy equation, 74, 91, 286, 289 Error estimator, 102
Energy functional, 255 Error indicator, 102
Energy norm error, 113 Error indicators, a posteriori, 244
Energy transport, 11 Error limit, 106
Energy/temperature calculation, 279 Error:
Engine intake, 194 diffusion, 239
Enthalpy, 8, 94 energy norm, 113
Entrainment coefficient, 304 interpolation, 104, 106, 108
Entropy, constant, 64 pollution, 244
Equation of state, 7, 67 RMS departure, 106
Equation solving, 275 Errors, phase, 229
Equation: Estimator, error, 102

Bernoulli, 94, 147, 265, 266 Estuaries, coastal, 218



Estuary:

Severn, 226-236
Euler boundary conditions, 305
Euler equation, 8—10, 93, 150, 171-177, 218, 298,

302

Euler flow, 83, 148
Euler problems, 180
Euler solution, 192

inviscid, 209

pure, 209
Euler—Stokes equations, 275
Eulerian flow modelling, 212
Evolution of heat, 121
Exit, flow, 293
Expansion:

Taylor, 39, 40
Experiments, physical, 169
Explicit algorithm, 100
Explicit characteristic—Galerkin procedure, 38, 40
Explicit dynamic codes, 132
Explicit form, 76, 275, 284
Explicit method, direct, 175
Explicit mode, fully, 99
Explicit scheme, 43
Explicit semi-explicit, 76
Explicit time marching algorithm, 104
Exponential law, 118
Exterior acoustics, 261
Exterior boundaries, 173
Exterior boundary integrals, 255
Exterior flows, 169, 172
Exterior problems, 252, 253
Exterior region, 256
Exterior series solutions, 255
Exterior solutions, 253

linking to, 255
Exterior surface wave problems, 250
Exterior wave problems, 251
External boundaries, 172, 227
Extremum, local, 176
Extrusion, 121, 122

transient, 128

Feeder, 144
FEM, wave envelope, 264
Fictitious boundary, 81, 172
Fighter, supersonic, 189
Filling of moulds, 143, 145, 148
Fine finite element mesh, 300
Finite differences, 2

one-sided, 17
Finite element:

Galerkin, 176

hp-version, 295

hybrid, 295

special, 249

Subject index

Finite increment calculus (FIC), 25, 30
Finite volume formulation, 189
First-order closure models, 162
First-order diffraction problem, 268
Flat nosed punch, 129
Floating body, 265, 266
Floating breakwater, 265, 266, 267
Flooding, 231
Flow:
compressible, 10, 48, 50, 66, 108, 170, 174, 224,
275
Euler, 83, 148
high speed, 169, 171, 180
hypersonic, 184, 207
ideal, 3
incompressible, 110, 275
incompressible laminar, 91
incompressible Stokes, 79
inviscid, 10
inviscid incompressible, 93
isothermal, 178
Mach 3, 187
mass, 6
potential, 3, 93
pure Stokes, 98
shallow water, 219, 50
steady-state, 120
Stokes, 2, 91, 118
subsonic, 81, 84, 189
supercritical, 236
supersonic, 185
transonic viscous, 203
turbulent, 164, 275, 289
viscous incompressible, 113
Flow codes, incompressible, 274
Flow coupling, boundary layer-inviscid,
302
Flow-dependent viscosity, 3
Flow equations:
averaged, 162
isothermal compressible, 223
potential, 146
Flow exit, 293
Flow fluxes, mass, 92
Flow formulation, 120
Flow modelling, Eulerian, 212
Flow of gases, 3
Flow past a cylinder, 161
Flow past harbour, 235
Flow problems:
compressible viscous, 274
fluid, 110
high-speed, 280
inviscid, 274
Flow separation, 171, 245
Flow vector, mass, 74
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Flows:
buoyancy driven, 153, 156
compressible, 73, 91, 173, 218, 280
high-speed, 280
exterior, 169, 172
free surface, 3, 91, 144
high-speed, 10, 187
hypersonic, 65
incompressible, 91
interior, 169, 172
laminar, 210
nearly incompressible, 10
non-newtonian, 118
porous media, 274, 276, 286
shallow water, 3
slow, 113
super critical, 235
supersonic, 82
thermal, 286
turbulent, 161, 210, 274
turbulent incompressible, 143
viscoelastic, 131
Fluid:
Bingham, 118
incompressible, 218
non-newtonian, 91
stresses in, 4
Fluid density, 6
Fluid dynamic, 4
Fluid dynamics, 1
Fluid flow problems, 110
Fluid—structure interaction, 265, 266
Fluid—structure, submarine, 262
Fluidized beds, packed and, 157
Flux:
average, 294
conductive heat, 8
mass flow, 92
Flux conservation, complete, 293
Flux matrices, 13
Flux quantities, diffusive, 14
Forced convection, 144, 286
Forces:
boundary, 91
buoyancy, 91
convective, 55
Coriolis, 229
driving, 154
gravity, 96
perturbation, 144
prescribed, 55
second-order wave, 271
wave, 250
Forces due to breaking, 235
Forchheimer Number, 159
Forming:

metal, 2, 3, 118, 120, 122
polymer, 118
sheet, 122
superplastic, 130
transient metal, 132
Free boundary condition, 233
Free surface, 96, 143145, 219, 265, 266, 274
Free surface flows, 3, 91, 144
Free wave, 269
Frequency independent mass matrix, 265
Frequency:
angular, 242, 243
Friction:
bed, 226, 235, 245
skin, 202
Friction coefficient:
Manning, 229
skin, 304
Frictional dissipation, 228
Frictional resistance, 226
Front, shock, 196
Froude Number, 148, 149, 224, 235, 236
Fully conservative form, 286
Fully explicit form, 76, 275
Fully explicit mode, 99
Fully implicit form, 275
Fully incompressible problems, 99
Function:
convected shape, 37
linear shape, 16
oscillatory, 262
potential, 94
Functional, 251
energy, 255
Functions:
Hankel, 256, 258, 260
trignometric, 256, 260
vector-valued, 52
velocity trial, 223
weighting, 19

Galerkin algorithm, characteristic, 43
Galerkin approximation, 54, 57, 70
(See also Bubnov—QGalerkin, Petrov—Galerkin)
Galerkin finite element, 18, 176
Galerkin Least Squares (GLS), 30
Galerkin methods, 1, 16, 23
characteristic, 34
discontinuous, 293
Galerkin, discontinuous, 26
Gas constant:
universal, 7, 65, 154, 170
Gas flow:
compressible, 57, 73, 218
high-speed, 57, 169
gas, compressible, 169



flow of, 3
ideal, 3, 7, 170
incompressible, 169
Gauss—Legendre integration, 248, 262
Gaussian distribution, 46
Generator:
unstructured mesh, 109
structured mesh, 275
Geomechanics, 157
Geometrical factor, 264
Geometry, die, 130
GiD, 289
Gloucester, 229
GLS, 48
Governing equations, depth-averaged, 220
Gradient based procedure, 113
Gradient based refinement, 110
Gradient procedures, conjugate, 77
Gradients, pressure, 91
Grashoff Number, 154
Gravity, 91
Gravity forces, 96
Green'’s theorem, 252, 298
Grids, unstructured, 303
Ground, moving, 192
Group velocity, 243

h-refinement process, 180
Half-bandwidth, 276, 286
Hankel functions, 256, 258, 260
Harbour:

artificial offshore, 258

flow past, 235

Long Beach, 258

open, 250
Harbour series, infinite, 235
Heat:

evolution of, 121

latent, 289

specific, 64, 92, 121, 156, 170
Heat capacity, averaged, 159
Heat conduction, 275
Heat convection, 238
Heat flux, conductive, 8
Heat generation terms, 33
Heat input, 124
Heat source terms, 8
Heat transfer, 157
Heat transport equation, 153
Heel angle, 150
Heights, tidal, 227
Helmholtz equation, 223, 242, 243, 244, 248, 255
Hemispheric thrust reverser, 96
Hemker problem, 296
Hermitian matrix, 263
Hexahedra, 132

Subject index

Hierarchical form, 301
Hierarchical formulation, 300
Hierarchy of boundary operators, 254
High Reynolds number, 113, 207
High-speed flow of gases, 52
High-speed flows, 10, 171, 180, 187, 280

compressible, 280
High-speed gas flow, 169
High-speed vehicles, 212
Higher Mach numbers, 174
Higher-order approximations, 25
Higher-order dampers, 254
Higher-order interpolations, 293
Highly anisotropic diffusion, 28
Hot metals, 120
Hot water discharge, 239
hp refinements, 103
hp-version finite element, 295
Hybrid finite element, 295
Hybrid mesh, 204
Hybrid methods, 293
Hydrodynamics:

ship, 145, 146
Hydrofoil:

submerged, 148, 149
Hydrostatic adjustment, 147
Hydrostatic pressure, 3-5, 223
Hyperbolic duct, 262
Hyperbolic problems, 110
Hypersonic flow, 65, 184, 207

Idea gas law, 7, 170
Ideal flow, 3
Ideal plasticity, 119
Ill-conditioning, 265
Implicit form:

fully, 275

nearly, 42, 76

quasi-nearly, 77
Implicit solution, 54
Incident mode, 263
Incident waves, 251, 252
Incompressibility, 1, 2, 3, 5, 10, 11, 66, 78, 81,

97

Incompressible elastic solids, 66, 113
Incompressible flow, 99, 110, 275

CBS algorithm, 97

inviscid, 93

nearly, 10

turbulent, 143

viscous, 113
Incompressible flow codes, 274
Incompressible fluid, 218
Incompressible gases, 169
Incompressible laminar flow, 91
Incompressible materials, 92
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Incompressible Stokes flow, 79
Indentation problem, punch, 126
Indirect boundary integral method, 256
Infinite boundaries, 173, 261
Infinite elements, 252, 259, 262, 265

Burnett, 261, 262

conjugated, 264

ellipsoidal type, 261

mapped periodic, 260

static, 260

unconjugated, 264

wave envelope, 262
Infinite harbour series, 235
Infinitesimal strain, 4
Infinity, boundary at, 251
Inflow boundary, supersonic, 172
Inflow limits, 178
Inflow, supercritical, 235
Inlet boundary conditions, 45
Inlet Mach number, 84
Input:

data, 275

heat, 124
Inside node, 299
Instability, wave, 271
Insulations, thermal, 157
Intake, engine, 194
Integral method:

direct boundary, 255

indirect boundary, 256
Integral models, boundary, 262
Integrals:

boundary, 252, 256

domain, 252

exterior boundary, 255
Integration:

by parts, 70

direct, 276

Gauss—Legendre, 248, 262

radial, 262

reduced, 116
Interaction, 262

boundary layer, 201

fluid-structure, 265, 266

shock, 201
Interface jumps, 294
Interior flows, 169, 172
Intermediate depth water, 268
Intermediate momentum, 279, 284
Internal energy, 170
Internal stresses, 8
Internal work dissipation, 123
Interpolation:

local patch, 107
Interpolation error, 104, 106, 108
Interpolation methods, 35

Interpolation of residuals, 301
Interpolations:

higher-order, 293

velocity—pressure, 117
Invariant:

total strain, 118
Invariants, Riemann, 58
Inviscid behaviour, 171
Inviscid Euler solution, 209
Inviscid examples, three-dimensional, 188
Inviscid flow, 10, 274
Inviscid incompressible flow, 93
Inviscid method, multiblock Euler, 303
Irrotationality, 94
Island problem, artificial, 259

Isothermal compressible flow equations, 223

Isothermal conditions, 177
Isothermal flow, 178

Isothermal form, 219

Isotropic fluid, linear newtonian, 5
Isotropic meshes, 109

Isotropic thermal conductivity, 8
Isotropic, viscosity, 118

Iterations, Newton—Raphson, 130
Iterative convergence, 188

Iterative non-linear solution, 96, 147

Jet, axisymmetric, 96
Jump:

positive, 235
Jumps, interface, 294

Keel, 150, 153
Kinematic condition, 265, 266
Kinematic viscosity, 66, 154, 162
Kinetic energy, 121

turbulent, 162
Korteweg—de Vries equation, 268
Kronecker delta, 5, 65
Kutta—Joukoski condition, 150

Lag-entrainment, 210, 303, 304
Lagrange multipliers, 294
Lagrangian velocity increment, 132
Lamé notation, 5
Laminar flow, 210, 302

incompressible, 91
Laminar flows, 210
Lapidus-type artificial diffusion, 179, 180
Laplace’s equation, 96, 265, 266
Laplacian form, 97
Large eddy simulation (LES), 161
Large wave height, 245
Large-amplitude progressive waves, 268
Large-amplitude water waves, 265, 266
Latent heat, 289



Law:

conservation, 13

exponential, 118

idea gas, 3, 170

plasticity, 132

Sutherland’s, 171
Lawrence Livermore Laboratory, 132
Lax—Wendroff, 246
Layer:

sponge, 254
Leaking lid formulation, 97
Leibnitz rule, 220
Lid-driven cavity, 100, 101, 103, 104, 111
Linear newtonian isotropic fluid, 5
Linear shape function, 16
Linear triangular elements, 283
Linking to boundary integrals, 255
Linking to exterior solutions, 255
Linking to series solutions, 256
Local extremum, 176
Local non-reflecting boundary conditions, 253
Local patch interpolation, 107
Local time stepping, 78, 280, 284
Localizing shocks, 181
Locally structured mesh, 108
Locked wave, 269
Locking, 132
Long Beach harbour, 258
Long-wave propogation, 224
Longshore currents, 235
Low Mach number, 65, 81, 84, 173
Low Rayleigh number, 159
Low Reynolds number models, 163
Lower diagonal term, 80
Lumped mass, 42, 43, 78, 175, 177, 278, 284

M2 tide, 227
M6 wing:
ONERA, 208, 209
Mach 2, 189, 194, 204
Mach 3 flow, 187
Mach 8.15, 207
Mach contours, 208
Mach number, 110, 169, 172, 188, 199, 204, 276,
304
higher, 174
inlet, 84
low, 81, 84
lower, 173
Magnetic field intensity vectors, 246
Manning friction coefficient, 229
Mapped periodic infinite elements, 260
Mapping, DtN, 259
Mass:
conservation of, 1, 6, 64, 66, 91, 219, 242, 291
Mass flow, 6, 74, 92

Subject index

Mass, lumped, 78
Mass matrices, 244
consistent, 175, 177, 284
lumped, 175, 177, 284
Mass matrix calculation, 278, 284
Mass matrix:
consistent, 43, 298
frequency independent, 265
lumped, 43
Mass transfer, 274, 275
Mass transport, 289
Material code, 275
Materials, incompressible, 92
Matrices:
conditioning of system, 250
consistent mass, 43, 175, 177, 284, 298
diagonal, 58, 72
flux, 13
hermitian, 263
lumped mass, 43, 175, 177, 284
mass, 244
positive definite, 295
stiffness, 244, 256
Maximum principal curvatures, 108
Maxwell equations, 243, 246
Mean water level, 219
Media flows:
porous, 274, 276, 286
Medium, porous, 157
Melenk and Babuska method, 247
Mesh:
adaptive, 205
fine, 300
hybrid, 204
isotropic, 109
locally structured, 108
moving, 122
structured, 169, 207, 276, 286
surface, 152
uniform, 112
unstructured, 286
updated, 36
Mesh data, 275
Mesh enrichment, 113, 180, 181
Mesh generation:
adaptive, 113
anisotropic, 109
structured, 275
unstructured, 109
Mesh refinement, 110, 113
adaptive, 102
Mesh solution, coarse, 300
Mesh subdivisions, 301
Mesh updating, 35, 147
Metal forming, 2, 3, 118
transient, 132
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Metals:
hot, 120

Meteorology, 218, 223

Method:

(See also algorithms, procedures, process)
characteristic—Galerkin, 34-36, 68, 176
direct explicit, 175
direct solution, 169
discontinuous Galerkin, 293
explicit characteristic—Galerkin, 40
Galerkin, 23
hybrid, 293
interpolation, 35
lag-entrainment, 210
multigrid, 300
Petrov—Galerkin, 18, 33
pseudo-concentration, 148
residual based, 176
shock capture, 174
Taylor—Galerkin, 34
Thwaites compressible, 303
two-step predictor—corrector, 55
wave envelope, 246

Minimum curvatures, 109

Minimum step, 280

Mixed and penalty formulations, 113

Mixed convection, 286

Mixed discretization, 116

Mixed form, 116

Mixing length, Prandtl, 163

Mode:
fully explicit, 99
incident, 263
spiral, 264

Models:
boundary integral, 262
Boussinesq, 162
computational, 251
DARPA submarine, 149, 152
first-order closure, 162
K-w, 163, 164
one-equation, 162
transpiration velocity, 210
turbulent x-¢, 209
turbulent x-w, 209
turbulence, 212
two-equation, 163

Modulus:
bulk, 5, 11, 64, 91, 92, 242
shear, 5, 115

Momentum, 159, 162, 304
balance of, 6
conservation of, 66, 92, 291
intermediate, 279

Momentum balance, 242

Momentum calculations, intermediate, 284

Momentum conservation, 6, 65, 219
Momentum correction, 279
Momentum equation, 154
Momentum variables, 284
Monochromatic plane wave, 252
Mont St Michel, 236
Motion:

convective, 157

equations of, 153

ship, 145
Motor car, 192
Mould filling, 143-148
Moving ground, 192
Moving mesh, 122
Multiblock Euler inviscid method, 303
Multidimensional problems, 15
Multigrid, 188, 189, 212, 300
Multiple wave directions, 247
Multiple wave speeds, 57
Multipliers, Lagrange, 294
MUSCL scheme, 188
Mushy regions, 289

NACAO0012 aerofoil, 84, 148, 202, 203, 204, 207

Natural boundary condition, 243, 252
Natural condition, 94

Natural convection, 144, 155, 158, 286
Natural convection in cavities, 156

Navier—Stokes equations, 8, 9, 10, 12, 26, 146, 150,

170-172, 180, 197, 210, 212, 219 275, 291
Reynolds Averaged, 162
Navigation, 218
Nearly implicit form, 42, 76
Nearly incompressible flows, 10
Negative diffusion, 22
Negative waves, 235
Nevada desert, 193
Newton—Raphson iterations, 130
No-slip (boundary condition), 82
Nodal coordinates, 275
Nodal pressure switches, 286
Nodal quantities, 283
Node:
boundary, 276, 280, 299
inside, 299
Noise, 250
Non-conservative equations, 9
Non-conservative form, 291
Non-linear solution, iterative, 96
Non-linear viscosity, 118
Non-linear waves, 48, 268
(See also Stokes waves, Korteweg—de Vries
equation)
Non-newtonian flows, 2, 6, 91, 118
Non-reflecting boundary conditions, 253
Non-self-adjoint equations, 1, 15



Non-standard weighting, 28
Normals:
advancing boundary, 206
surface, 276, 278
Number (see also under names of Numbers)
Courant, 42, 97
Darcy, 160, 161, 276
Forchheimer, 159
Froude, 148, 149, 235, 236
Grashoff, 154
higher Mach, 174
inlet Mach, 84
low Mach, 81, 84, 173
low Rayleigh, 159
Mach, 110, 169, 172, 188, 199, 204, 276, 304
Peclet, 16, 18, 26
penalty, 116
Prandtl, 66, 154, 276
Rayleigh, 155, 156, 276
Reynolds, 66, 97, 98, 115, 149, 156, 163, 164,
207, 276
wave, 262
Numerical approximations, 173
Numerical rheology, 132

Oblate spheroidal coordinates, 261

Oceanographic engineering, 223

Oceans, 3, 218

Offshore harbour, artificial, 258

Offshore structures, 250

One dimension, upwinding in, 18

One-equation model, 162

One-sided finite differences, 17

ONERA M6 wing, 208, 209

Open harbours, 250

Operators, boundary, 250

Optimal damping, 78

Optimal upwind parameter, 19, 20, 25, 42
spurious, 50

Oscillation-free solution, 100

Oscillations, 28, 113, 161, 171, 280, 293

Oscillatory function, 262

Oswald de Wahle law, 118

Outer boundary, 251

Outflow boundaries, supersonic, 173

Outflow limits, 178

Output (computer program), 275

Overflow, 144

Packed and fluidized beds, 157
Parabolic shoal, 257
Parallel processing, 246
Parallization, 189
Parameters:

Coriolis, 221

optimal upwind, 25, 42

Subject index

Peclet, 27

penalty, 116

turbulence, 75
Particle size, average, 159
Patch, 107
Patch interpolation, local, 107
Path, circulation, 112
Peclet number, 16, 18, 26, 27
Penalty discretization, 116
Penalty formulations, 113
Penalty number, 116
Pendine Sands, 193
Perfectly matched layer (PML), 254
Perfectly reflecting wall, 243
Periodic response, 226
Periodic tidal motions, 225
Permeability, 243
Permeable breakwaters, 245
Perturbation forces, 144
Perturbation, surface, 3
Petrov—Galerkin:

streamline, 27, 30

streamline upwind, 28
Petrov—Galerkin approximation, 17-19, 20, 23,

25, 26, 30, 33, 42, 43

Phase change, 289
Phase errors, 229
Physical experiments, 169
Piecewise polynomial basis, 296
Plane dampers, 253
Plane monochromatic wave, 248, 252
Plasticity, 118, 119, 132
Poisson equation, 97
Polar coordinates, spherical, 261
Pollutant dispersal, 218, 227
Pollutants, 237
Pollution error, 244
Polymers, 118, 120
Polynomial basis, piecewise, 296
Porosity, 159, 276
Porous media flows, 157, 274, 276, 286
Positive definite matrix, 295
Positive jump, 235
Potential, 10, 93

body force, 96

vector, 243

velocity, 243, 265, 266
Potential element, 265, 266
Potential flow, 3, 93, 146
Potential function, 94
Prandtl, 210
Prandtl mixing length, 163
Prandtl Number, 66, 154, 276
Predictor-corrector methods, two-step, 55
Prescribed boundary velocities, 120
Prescribed forces, 55
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Prescribed traction boundary conditions, 83 Pure Euler solution, 209
Preservation of mass, 1 Pure Stokes flow, 98
Pressure, 1, 4, 7, 65, 170, 175, 265, 266 Purely convective form, 10
acoustical, 264
atmospheric, 220 Quadrilateral elements, 132, 206, 207
average, 175 Quasi-implicit solution, 77, 98, 103, 104, 275
coefficient of, 304
constant, 170 r refinement, 113
hydrostatic, 5, 223 Radar, 246
surface, 202 Radial integration, 262
Pressure contours, 208, 210 Radiated wave, 251
Pressure distribution, 211 Radiation condition, 44, 250, 251, 269
Pressure gradients, 91 Radiation of acoustic waves, 242
Pressure hydrostatic, 3 Radiation problem, 250
Pressure switch, 174, 286 Radiation stresses, 235
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Pressure waves, 245 Random fluctuation of velocity, 10
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Principal values (of curvatures), 107 Rate dependence, viscosity—strain, 118
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(See also algorithm, method, process) Rayleigh—Bernard convection, 156
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iterative solution, 147 adaptive, 102, 132, 180, 200, 206
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Petrov—Galerkin, 20, 30 gradient based, 110
solution, 70 mesh, 110, 113
stabilization, 280 r, 113
Taylor—Galerkin, 57, 173 second, 205
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Process: Reflecting wall, perfectly, 243
(See also algorithm, method, procedure) Reflection:
Characteristic—Galerkin, 69 shock wave, 182
Galerkin, 1 Reflections, undesired, 227
h-refinement, 180 Refraction, 250
incompressibility stabilizing, 66 Region:
Petrov—Galerkin, 43 exterior, 256
Taylor—Galerkin, 47 mushy, 289
transient, 120 shock, 197
Progressive steepening, 224 turbulent, 303
Progressive waves, large-amplitude, 268 Reimann variables, 173
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Prolongation operator, 300 dispersion, 243, 269, 271
Propagation speeds, 172 Ergun’s, 159
Propagation, shock, 50 Sutherland’s, 284
Propogation, long-wave, 224 Relationship, state, 10
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Punch indentation problem, 126, 129 Residual based methods, 176
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Resistance, frictional, 226
Resonant cavity, 243
Response:

periodic, 226

wave, 250
Restoration of connectivity, 181
Restriction:

Babuska—Brezzi (BB), 66, 78, 80
Retardation, 245
Reverser, hemispheric thrust, 96
Reynolds averaged Navier—Stokes equations, 162
Reynolds averaging, 10
Reynolds Number, 66, 97, 98, 115, 149, 156, 163,

164, 276

high, 207

very high, 208
Reynolds shear stress, 143, 162
Reynolds viscosity, 10
Rheology, numerical, 132
RHS (Right Hand Side) vector, 284, 253, 298
Riemann analysis, 172, 233
Riemann invariants, 58
Riemann shock tube, 177
Rigid—plastic, 120
Rip currents, 235
River Severn, 229
Rivers, 218
RMS departure error, 106
Rocket, 196, 197
Rubbers, synthetic, 132
Rudder, 150, 153
Runge—Kutta scheme, 55, 56

Sailing boat, 150, 153
Sailing speed, 150
Salinity, 238, 239
Scalar convection—diffusion equation, 92
Scalar equations, transient, 34
Scalar, steady-state, 26
Scattering problem, 246, 250
Scheme:
CBS, 14
explicit, 43
MUSCL, 188
Runge—Kutta, 56
Taylor—Galerkin, 85
two-step, 84
Seaward limit, 233
Secant viscosity, 118
Second derivative based methods, 175
Second derivative of pressure, 280, 283
Second derivative shock capture, 186
Second derivatives, 107
Second refinement, 205
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Sediments, transport of, 218, 237
Self-adjoint equation, 1, 14, 96
Self-adjointness, 31
Semi-explicit algorithms, 227
Semi-explicit forms, 275
Semi-implicit form, 76, 224, 284
Semi-inverse coupling, 303
Separation, 245, 303

boundary layer, 211

flow, 171, 245
Series solutions, 253

exterior, 255

linking to, 256
Series, infinite harbour, 235
Severn barrage, 226
Severn bore, 232, 233
Severn Estuary, 226, 229, 230, 231, 232, 236
Severn tsunami, 234
Severn, River, 229
Shallow water flow, 3, 50, 219
Shallow-water equations, 223
Shallow-water problem, 218, 222, 274
Shallow-water theory, 265, 266
Shallow-water transport, 237
Shape function:

convected, 37

linear, 16
Shape parameter:

velocity profile, 304
Sharp discontinuity, 181
Shear modulus, 5, 115
Shear stress:

Reynolds, 162
Shear stress coefficient, 304
Shear stresses, surface, 221
Shear viscosity, dynamic, 5
Shear, bottom, 221
Shedding:

eddy, 3

vortex, 114
Sheet forming, 122
Shelving beach, 224
Ship, 3, 144
Ship hydrodynamics, 145, 146
Ship motion, 145
Shoal:

parabolic, 257
Shoaling of a wave, 225
Shock, 9, 200, 235

stationary, 182
Shock capture, 52, 174, 176, 180, 186, 275, 276,

280, 286

Shock development, 3
Shock fitting, 174
Shock front, 196
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Shock interaction, 201
Shock like behaviour, 28
Shock propagation, 50
Shock regions, 197
Shock tube, 224

Riemann, 177
Shock wave reflection, 182
Shock wave, 236

bow, 187

Shocks, 48, 108, 206, 218, 226, 286, 292

localizing, 181
Short-wave problem, 245
Shuttle, 196, 197
Side boundaries, 235
Side repeated, 235
Simulation, direct numerical, 161
Single-step algorithm, 80, 84
Situations, steady-state, 15
Size:

average particle, 159

smallest element, 181
Skin friction, 202, 304
SLIP, 82
Slip boundary, 123, 235
Slip conditions, 83
Slow flows, 113
Slow speeds, very, 2
Sluice gate, 144
Small waves, 147
Smallest element size, 181
Smearing, 29, 50, 179
Smoothing, 176
Solid wall boundary, 172, 173
Solidification, 157, 274
Solids, incompressible elastic, 66
Solitary wave, 224, 268
Solution:

banded, 276

boundary, 146

boundary layer, 305

CBS, 200

coarse mesh, 300

Euler, 192

exterior, 253

exterior series, 255

implicit, 54

inviscid Euler, 209

iterative non-linear, 96

oscillation-free, 100

Navier—Stokes, 171

pure Euler, 209

quasi-implicit, 98

quasi-implicit, 103

quasi-implicit, 104

series, 253

transient, 15

Solution methods, direct, 169

Solution of simultaneous equations, 286

Solution procedure, 70
Solution procedures, iterative, 147
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Sommerfeld (radiation condition), 250
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speed of, 3, 64, 172—178
Source, 73
Source term, 237
variable, 22
heat, 8
Spatial discretization, 70
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Specific energy, 92, 94
Specific heat, 64, 92, 121, 156, 170
constant volume, 170
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sailing, 150
Speed of sound, 3, 64, 172, 175, 178
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multiple wave, 57
propagation, 172
transonic, 48
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Sphere diffraction, elastic, 262
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Spiral mode, 264
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CBS (Characteristic Based), 59, 83

Chorin, 67

operator, 36
Split A, 68, 70, 78, 79, 80, 84
Split B, 68, 69, 75, 78, 79, 83
Sponge layer, 254
Spring-back, 131
Spurious oscillation, 50
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SSC, THRUST, 191
St Michel, Mont, 236
Stability, 37, 38, 81, 250
Stability condition, 42
Stability limit, 42, 54, 76
Stability, conditional, 38

Stabilization, 39, 66, 70, 78, 80, 81, 113, 280, 284

Stable, unconditionally, 54
Stagnation point, 204
Stagnation stream, 302
State relationship, 10
State, equation of, 7, 67
Statement:

weak, 294

weighted residual, 264
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Steel, 120
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critical time, 224
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Swansea two, 57
Stiffness matrix, 244, 256
Stokes equations, 81, 132
Stokes flow, 2, 91, 118
incompressible, 79
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Stokes waves, 268
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Strain rate tensor, 118
Strain rates, 3, 4
deviatoric, 5
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deviatoric, 71, 72
infinitesimal, 4
Stream function calculation, 289
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stagnation, 302
Streamline assembly, 28
Streamline balancing diffusion, 27-30
Streamline direction, 39
Streamline Petrov—Galerkin, 27-30
Streamlines, 176
Streamwise velocity, 304
Stress:
deviatoric, 65, 71, 92
hydrostatic, 4
Reynolds shear, 162
Stress coefficient, shear, 304
Stresses in fluids, 4
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bottom drag, 222
deviatoric, 1, 5, 72
internal, 8
radiation, 235
Reynolds, 143
surface shear, 221
viscous, 222
Stretching ratio, 108, 109, 110
Stretching, element, 182
Structured finite element grids, 274
Structured mesh generators, 275
Structured mesh:
locally, 108
Structured meshes, 169, 207, 276, 286
Structured subgrid of elements, 208
Structured triangle elements, 206
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Subdomain collocation, 2
Submarine, 3, 149
Submarine fluid—structure interaction, 262
Submarine model:
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Submerged hydrofoil, 148, 149
Subsonic flow, 67, 81, 84, 189
Superconvergent values, 107
Supercritical flow, 235, 236
Superecritical inflow, 235
Superplastic forming, 130
Supersonic car, 191
Supersonic fighter, 189
Supersonic flow, 67, 82, 185
Supersonic inflow boundary, 172
Supersonic outflow boundaries, 173
SUPG (Streamline Upwind Petrov—Galerkin), 48
Surface:

free, 143-145, 219, 274

wing, 304
Surface condition:

Cauchy—Poisson free, 265, 266

free, 96, 265, 266
Surface flows:

free, 3, 91, 144
Surface mesh, 152
Surface normals, 276, 278
Surface perturbation, 3
Surface pressure, 202
Surface shear stresses, 221
Surface wave, 251
Sutherland’s law, 171, 284
Swansea, 229
Swansea two step, 57
Switch, 175

pressure, 174, 286
Symmetric channel, 236
Synthetic rubbers, 132
System matrix, conditioning, 250

Taylor expansion, 39, 40
Taylor—Galerkin, 34, 39, 47, 48, 56, 57, 85, 170,
173, 224
two-step, 55
Temperature, 3, 143, 286, 289
absolute, 7, 92, 154
Temperature-dependent viscosity, 11
Tensor, strain rate, 118
Tetrahedral elements, 206
Theorem:
Green’s, 252, 298 theory:
Berkhoff’s, 265, 266
boundary layer, 212
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Theorem — cont. Transport equation, 14, 163, 171
shallow-water, 265, 266 depth-averaged, 237
Thermal conductivity, 8, 65, 66, 156, 159, 161 heat, 153
Thermal coupling, 11, 125 Transport of sediments, 218
Thermal diffusivity, 154 Trial functions, velocity, 223
Thermal flows, 286 Triangle elements, 207, 274
Thermal insulations, 157 structured, 206
Thickness: linear, 283
boundary layer, 207, 304 Triangulation, Delaunay, 109
displacement, 304 Trigonometric functions, 256, 260
Three-dimensional inviscid examples, 188 Tsunami wave, 231, 233
Three-dimensional viscous problems, 207 Tsunami, Severn, 234
Threshold value (of stress, Bingham), 118 Tube:
Thrust reverser, hemispheric, 96 Riemann shock, 177
THRUST SSC, 191 shock, 224
Thwaites compressible, 302, 303 Tunnel:
Tidal bore, 229 wind, 179, 192
Tidal computations, transient, 236 Turbomachinery, 169
Tidal currents, 238 Turbulence, 3, 10, 143, 161
Tidal elevations, 226, 227 Turbulence effects, 212
Tidal motions, periodic, 225 Turbulence modelling, 75, 171, 212
Tide, M2, 227 Turbulence structure, 304
Time averaged viscosities, 143 Turbulent, 221, 302
Time loop, 278 Turbulent eddy viscosity, 162
Time step: Turbulent flow, 143, 161, 164, 210, 274, 275, 289
critical, 224 Turbulent k- model, 209
Time stepping, 275 Turbulent kinetic energy, 162
local, 78, 280, 284 Turbulent x-w model, 209
Time stepping options, 280 Turbulent region, 303
Total depth, 220 Two-component aerofoil, 206
Total strain invariant, 118 Two-equation models, 163
Total wave elevation, 251 Two-step predictor-corrector methods, 55
Traction, 73 Two-step schemes, 84
Tractions, boundary, 83 Two-step Taylor—Galerkin operation, 55
Trailing edge, 150
Transfer: Unbounded domains, waves in, 250, 253
heat, 157 Unconditionally stability, 54
mass, 274, 275 Unconditionally unstability, 55
Transient changes of pressure, 2 Unconjugated infinite elements for waves, 264
Transient dampers, 265 Undesired reflections, 227
Transient extrusion, 128 Uniform mesh, 112
Transient metal forming, 132 Universal gas constant, 7, 65, 154, 170
Transient phenomena, 3 Unstable vortex street, 149
Transient problems, 120, 124, 265 Unstable, unconditionally, 55
Transient response of dipole, 265 Unstructured domain subdivision, 2
Transient scalar equations, 34 Unstructured finite elements grids, 274
Transient solution, 15 Unstructured grids, 303
Transient tidal computations, 236 Unstructured mesh generator, 109
Transonic speeds, 48 Unstructured meshes, 286
Transonic viscous flow, 203 Updated mesh, 36
Transpiration velocity, 210, 304, 305 Updating:
Transport: mesh, 35, 147
energy, 11 Upwind difference approximation, 17, 18
mass, 289 Upwind parameter:
shallow-water, 237 critical stable, 20

sediment, 218 optimal, 19, 20, 25, 42
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User manual, 276
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Values, principal (of curvatures), 107, 108

superconvergent, 107
Variable:

auxiliary, 69

characteristic, 175

choice of, 110

conservative, 298

momentum, 284

Reimann, 173

temperature, 286
Variable source term, 22
Variable width, 236
Variational principle, 22
Variational treatment, 251
Vector:

mass flow, 74

RHS, 284
Vector potentials, 243
Vector-valued functions, 52
Vehicles, high-speed, 212
Velocities, prescribed boundary, 120
Velocity:

acoustic wave, 11

convection, 293

group, 243

streamwise, 304

transpiration, 304, 305
Velocity components, 65
Velocity increment, lagrangian, 132
Velocity model, transpiration, 210
Velocity potential, 243, 265, 266
Velocity profile shape parameter, 304
Velocity trial functions, 223
Velocity—pressure interpolations, 117
Very high reynolds Number, 208
Very slow speeds, 2
Very slow viscous flow, 66
Vessel:

pressure, 196
Vessels, 250
Viscoelastic flows, 131
Viscoplasticity, 118
Viscosities:

artificial, 174

time averaged, 143
Viscosity, 2, 5, 92, 98, 115, 174

anisotropic, 174

dynamic, 66, 156
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flow-dependent, 3
kinematic, 66, 154, 162
non-linear, 118
Reynolds, 10
secant, 118
temperature-dependent, 11
turbulent eddy, 162
volumetric, 5
Viscosity coefficient, 221
Viscosity, isotropic, 118
Viscosity ratio, 66
Viscosity terms, artificial, 280
Viscosity—strain rate dependence, 118
Viscous boundary layers, 110, 304
Viscous diffusive terms, 76
Viscous dissipation, 245
Viscous drag, 146
Viscous effects, 3
Viscous flow:
hypersonic, 207
transonic, 203
very slow, 66
Viscous incompressible flow, 113
Viscous problems, three-dimensional, 207
Viscous stresses, 222
Viscous-inviscid coupling, 210, 211
Volumetric viscosity, 5
Von Karman vortex street, 113, 161
Vortex shedding, 114
Vortex street:
unstable, 149
Von Karman, 113

Wake, 203
Wall boundary:
solid, 172, 173
Wall, perfectly reflecting, 243
Water:
deep, 268
intermediate depth, 268
objects in, 252
Water depth, 242, 243
Water discharge, hot, 239
Water flow:
shallow, 3, 219
Water level, mean, 219
Water waves:
large-amplitude, 265, 266
Wave:
bow shock, 187
free, 269
locked, 269
plane monochromatic, 252
radiated, 251
solitary, 224
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Wave — cont. incident, 251, 252
steep, 50, 224 large-amplitude, 265, 266, 268
surface, 251 negative, 235
tsunami, 233 non-linear, 48
Wave celerity, 224 plane, 248
compressible, 172 pressure, 245
Wave component, 260 radar, 246
Wave diffraction, 248, 250 radiated, 251
Wave directions, multiple, 247 shock, 236
Wave domains, general, 252 small, 147
Wave elevation, 242, 243, 265, 266 solitary, 268
second-order, 269 Stokes, 268
total, 251 tsunami, 231
Wave envelope, 246, 263, 264 Waves in closed domains, 243
Wave envelope infinite elements, 262 Waves in unbounded domains, 250
Wave equation, 242, 268 Weather prediction, 218
Helmbholtz, 223 Web page, publisher’s, 276
Wave forces, 250 Weighted residual statement, 14, 251, 264
second-order, 271 Weighted residual treatment, 251
Wave height amplification, 258 Weighting:
Wave height, large, 245 complex conjugate, 260
Wave instability, 271 Galerkin, 16
Wave nature of solution, 33 Galerkin Bubnov, 14
Wave pattern, 91, 152 non-standard, 28
Wave problems: Petrov—Galerkin, 19, 26
electromagnetic, 57 streamline Petrov—Galerkin, 27
exterior, 251 Weighting functions, 19
Wave reflection, shock, 182 Weighting method, complex conjugate, 246
Wave response, 250 Width, variable, 236
Wave speeds, multiple, 57 Wind drag, 221
Wave velocity, acoustic, 11 Wind tunnel, 179, 192
Wavelength, 243 Wing:
Wavenumber, 242, 243, 262, 269 ONERA M6, 208, 209
Waves: Wing surface, 304
acoustic, 3, 242, 243
cnoidal, 268 k-w model (turbulence), 164, 209
elastic, 245 r-¢ model (turbulence), 163, 209

electromagnetic, 4, 242, 243, 245
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